
/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 1 of 20

 Chapter 1:
 1

MG4J (big): The Manual
A Quick Tour of MG4J

Building your first index
Indexing in MG4J is centered around documents, either exposed by means of sequences or of collections.
For the time being, let us concentrate on collections, which are randomly addressable lists of documents.

Each document in a collection is associated with a title and a URI. Typical titles are filenames, or titles from
HTML documents. URIs can be the actual URL of a page. To build our first document collection, we use the
main method of the class FileSetDocumentCollection, which allows to build and serialize a set of
documents specified by their filenames. As a typical case, we will build a collection out of your Javadoc
documentation directory. Supposing your Javadocs are located in /usr/share/javadoc, you may try the
following:

find /usr/share/javadoc/ -iname *.html -type f | \
 egrep -v "(package-|-tree|class-use|index-.*.html|allclasses)" | \
 java it.unimi.di.big.mg4j.document.FileSetDocumentCollection \
 -f HtmlDocumentFactory -p encoding=UTF-8 javadoc.collection

Let us try to understand what's happening. We are providing as input to the main method of the class a list
of files, one per line. Moreover, we are specifying (using the -f option) a factory, that is, something that will
turn a pure stream of bytes (provided, in this case, by a file) into a document made by several fields (for
instance, title and main text). The factory needs to know the encoding of the files, and we are specifying
UTF-8 as a property. All this information is serlialised and stored in a file named javadoc.collection.
Note that since we are using a standard MG4J factory, we can avoid to write the full factory class name
(it.unimi.di.big.mg4j.document.HtmlDocumentFactory).

If you try and look into the file javadoc.collection, you will discover that this is indeed a typical,
serialized version of a Java object; note that the file is not going to contain the files that are part of the
collection, but only their name. This means, in particular, that the very existence of the collection will
depend on the existence of the files spanned by the collection; in other words, deleting or modifying any of
the indexed file may cause inconsistence in the collection (and, more importantly, in the index produced in
the following steps). This is true of almost every collection: document collections may base their existence
on some external data (files, web pages, mailbox files etc.), and they usually become inconsistent as soon
as such data are modified, changed or deleted.

It is now time to index our collection. To do so, we simply pass the collection to the main method of the
class IndexBuilder, which scans all documents in the collection and produces a number of indices, one for
each field of the collection. The number of fields depends on the factory used to produce documents: in
our case, we will get indices for the title (the content of the HTML title element, if present; the filename is
used, instead, if the title element is absent) and the body (the textual content of the entire HTML page).
Additionally, FileSetDocumentCollection sets the URI of each document to a URI pointing to the absolute
location of the file in the file system; the document title is, once more, going to be the title appearing in the
HTML content.

java it.unimi.di.big.mg4j.tool.IndexBuilder \
 --keep-batches --downcase -S javadoc.collection javadoc

The class IndexBuilder has a large number of options, as it runs in sequence the two phases of the
indexing process. These phases are also available separately, mainly in the case of very large collection
(hundreds of millions of documents) for which the memory limits are rather tight. Note that we did not
specify a memory option, for instance, --Xmx256M, as it is not necessary (and might be even pernicious) on
newer Java virtual machines, which allocate memory dynamically; if you run into memory problem, please

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 2 of 20

 2

newer Java virtual machines, which allocate memory dynamically; if you run into memory problem, please
allow for more memory.

In this example, we have used the --downcase option that forces all the terms to be downcased: this
means that the index will collapse words that differ only for the presence of upper/lowercase letters. For
example, terms String and string will not be distinguished. More generally, you could specify a different
term processor for custom term modification (in this case, the DowncaseTermProcessor class has been
implicitly chosen). The -S option specifies that we are producing an index for the specified collection
(javadoc.collection): if the option was omitted, Index would expect to index a document sequence
read from standard input (more about this below). The --keep-batches option is not used normally, but
we specify it here so to have a look at the temporary files generated during the indexing process. The last,
unflagged option, javadoc, is the only mandatory option for Index, and it is the index basename, the
basename after which all index files are stemmed.

Since our collection has documents containing two fields, named title and text, there will be two sets of
index files: each will be named, by convention, with the index basename followed by the field name
(separated with a dash). Hence, there will be index files named javadoc-title.something and files
named javadoc-text.something.

We have now built indices, and we are ready to query them using a web server. This is very easy in MG4J:
we just run the main method of the Query class specifying the -h option and passing as argument the
indices and (for showing snippets) the collection:

java it.unimi.di.big.mg4j.query.Query -h -i FileSystemItem \
 -c javadoc.collection javadoc-text javadoc-title

We can now either use the command line (if you have rlwrap installed, you can put it to good use), or open
the search page by pointing our browser to http://localhost:4242/Query and start querying the
collection. Note that -i option, which specifies what to link to result items: the specified class links a file in
the file system using a local HTTP server (the observation about class names made for factories applies
here, too).

Note that the names we specified for the indices (e.g., javadoc-text) are actually URIs, so you can add
options much like in a web query. For instance, javadoc-text?inMemory=1 would load the index into main
memory, whereas javadoc-text?mapped=1 would try to use low-level memory-mapping features of the
operating system to cache the most frequently used part of the index in main memory.

Building a compressed collection
During the indexing process, it is possible to build a compressed version of the collection used to build the
index itself. There are several ways to do that (and you can program your own). The easy way is to use the
-B option, which accepts a basename from which various files will be generated. By default, MG4J will
generate a SimpleCompressedDocumentCollection (but you can write your kind of collection, provide a
DocumentCollectionBuilder for it, and just pass it to Scan). For instance,

java it.unimi.di.big.mg4j.tool.IndexBuilder \
 -B javacomp --downcase -S javadoc.collection javadoc

would generate during the indexing process a collection, which would be named javacomp.collection,
that you can pass to Query. The collection is actually a ConcatenatedDocumentCollection that exhibits a
set of component instances of SimpleCompressedDocumentCollection, one per batch (this arrangement
makes collection construction more scalable). This is an important fact to know, because if you move
javacomp.collection somewhere else you will also need to move all files stemmed from javacomp@,
which contain the component collections.

Note that in this particular case there is no need to build another collection—the
FileSetDocumentCollection used to build the index can be happily passed to Query. This is, however,
not always the case, as MG4J builds indices out of sequences—objects that expose the data to be indexed

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 3 of 20

 3

 4

not always the case, as MG4J builds indices out of sequences—objects that expose the data to be indexed
in a sequential fashion. A typical example is the default, built-in InputStreamDocumentSequence. Assume
you have a file documents.txt that contains one document per line. You can index it as follows:

java it.unimi.di.big.mg4j.tool.IndexBuilder \
 --downcase -p encoding=UTF-8 javadoc <documents.txt

Note the -p encoding=UTF-8 option, which sets the encoding of the text file. This command will create a
single index with field name text (you can change the field name with another property—see the
InputStreamDocumentSequence Javadoc). When you query the index, results will be displayed as numbers
(positions in the original text), as Query has no access to a document collection. But if you specify the -B
option, you can build on the fly a collection that can be used by Query to display snippets.

The kind of collection that is create is customisable. The interface DocumentCollectionBuilder specifies
what a collection builder should provide to be used at indexing time, and a builder can be specified with
the --builder-class option. For instance, by specifying --builder-class
ZipDocumentCollectionBuilder you will get back the behaviour of the obsoleted -z option—building a
ZipDocumentCollection.

There are many other collections you can play with—they are contained in the package
it.unimi.di.big.mg4j.document. There are collections for reading from JDBC databases,
comma-separated files, and so on (and, of course, you can write your own). Some collections let you play
with other collections: ConcatenatedDocumentCollection exhibits a set of collection as a single collection
that concatenates their content. SubDocumentCollection exhibits a contiguous subset of documents of a
given collection as a new collection. Some of these classes have constructor that follow dsiutil's
ObjectParser conventions, and thus can be constructed directly for the command line. One such class is
SubDocumentCollection; the following command line uses the -o option to build such a collection on the
fly:

java it.unimi.di.big.mg4j.tool.IndexBuilder \
 --downcase -oSubDocumentCollection\(javadoc.collection,0,10\) mini

The above command would just index the first ten documents of javadoc.collection (see the Javadoc of
SubDocumentCollection for more details). You can then use the option -o to pass the same collection to
Query, or build a compressed collection during the indexing phase.

More options
All tools and classes used so far have a large number of options that make them highly configurable. For
instance, there are other properties of a factory that can be specified—please have a look at the Javadoc of
the document factory you are using. For instance, a common property is wordreader, which makes it
possible to specify a different instance of WordReader—the class that it used to segment text into words
and non-words. The standard WordReader (FastBufferedReader) considers just letters and digits as part
of a word, but you can choose your variant, and even specify it directly on the command line: for instance,
-pwordreader=FastBufferedReader\(_\) specifies that underscores should be considered as part of a
word. More generally, you can specify an expression that follows dsutils's ObjectParser conventions and
that will be used to instantiate a WordReader.

All MG4J tools implement the standard --help option, which will display a detailed help text.

Querying MG4J
Querying MG4J is easy if you already used a text-indexing system. The simplest possible query is a single
term, e.g., class: the answer that you will obtain by such a query is the set of all documents (in our case:
all files among those that have been indexed) that contain the word class (or any other
uppercase/lowercase variant thereof).

There are several additional operators you might want to try:

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 4 of 20

 4.1

AND: writing more than one term (separated by whitespace) means that you want to look for
documents that contain all the specified words (not necessarily in the same order or consecutively); for
example, the query InputStream Reader encoding means that you want to look for documents that
contain all the given words; you can convey the same meaning by using the operator & (a.k.a. AND),
thus writing InputStream & Reader & encoding instead;

OR: if you want to write a disjunctive query you can use the operator | (a.k.a. OR); thus, for example,
the query InputStream | Reader | encoding means that you are looking for documents that
contain any of the given words;

NOT: you can use the operator ! (a.k.a. NOT) to mean negation; thus, for example, the query
InputStream & !Reader means that you are looking for documents that contain the first term but not
the second;

phrase: you can force consecutivity by using quotation marks; thus "InputStream Reader" means
that you want to look for documents that contain these two words consecutively;

proximity restriction: you can limit your search to documents where the words you are searching
appear within a limited portion of the document; this is done with the tilda operator; for example,
(InputStream Reader)~5 means that you are looking for documents where the two given words
appear (in any order) within 5 words from each other;

ordered AND: writing more than one term separated by < will find documents containing the given
terms in the specified order.

wildcard search: you can perform wildcard searches by appending * at the end of a term; for
example, term* will look for documents containing "term", "terms", "termed" and so on.

parentheses: you can use parentheses to enforce priority when building complex queries; parentheses
are not needed in many cases, but they are necessary, for example, when a boolean query is written
within a phrase; for example, if you want to look for the word InputStream followed by Reader or
Writer, you will enter the query "InputStream (Reader | Writer)".

index specifiers: prefixing a query with the name of an index followed by a colon you can restrict the
search to that index. The name of an index is by default the name of the field that it has indexed, so
title:Reader will search for Reader just in titles.

range queries: if you created an index containing payloads (dates, integers, etc.) you can perform
range queries using square brackets and two dots: for instance, assuming the existence of a field
date the query [20/2/2007 .. 23/2/2007] will search for documents whose date is between 20
February and 23 February 2007, inclusive.

MG4J will emphasise intervals satisfying the query. By clicking on the link of a document, the document will
be opened in the browser.

The description we have just given just scratches the surfaces of the queries you can write with MG4J: all
the operators can be freely combined, obtaining very sophisticated constraints on the documents returned.
More information on this topic can be found in the documentation of the package
it.unimi.di.big.mg4j.search.

More sophisticated queries
MG4J actually provide very sophisticated query tuning. In particular, it provides scorers, which let you
reorder the documents satisying a query depending on some criterion. To use this features, you must use
the command line interface, albeit all settings will be used for the subsequent web queries.

Type $ to get some help on the available options. A basic command is $mode, which lets you choose the
kind of result: just the document number and title, the intervals, snippets and so on. Some options require
a full index and a collection (for instance, snippets). The most interesting command, however, is $scorer,
that lets you choose a scorer for your documents. For instance,

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 5 of 20

 4.2

that lets you choose a scorer for your documents. For instance,

$score BM25Scorer VignaScorer

reproduces the standard settings, using a BM25 scorer and a scorer that shows firsts documents satisfying
your queries more frequently and in smaller intervals, linearly combined with equal weight. Scorers are
described in the documentation of the package it.unimi.di.big.mg4j.search.score.

When you use a scorer, it is a good idea to use multiplexing: when multiplexing is on, each query is
multiplexed to all indices (by default, a query is directed to the first index specified on the command line).
Just type

$mplex on

Of course, you can always choose a specific index with the colon notation. You can also change the weight
of your indices (which is particularly useful when multiplexing):

$weight text:1 title:3

In this way, weight-based scorers will usually consider the title field three times more important than the
text field.

You can also change the way snippets (or intervals) on display are chosen: MG4J provides an interval
selector, a class that will try to choose the best intervals to be shown. You can set the maximum length of
an interval, and the maximum number of intervals:

$selector 3 40

will show at most three intervals, and intervals longer than 40 characters will be broken. All these changes
are reflected in the web interface.

If you want to learn more about query resolution, you should have a look at the documentation of the class
it.unimi.di.big.mg4j.query.QueryEngine, which embodies all the logic used to answer queries in
MG4J.

A semantic index
For our next example, we will put to good use the semantically annotated snapshot of the English Wikipedia
created at Yahoo!. The collection exhibits Wikipedia articles as a number of parallel texts, one of which is
the sequence of tokens, whereas others provide information like "this token is a person's name". MG4J
provides an alignment operator that can be used with parallel texts to align results of two queries—in
practise, you can ask which results of an arbitrary query match certain semantic conditions. The support
has a few rough edges, but it's an interesting example nonetheless.

First of all, you must get the collection, for instance through Yahoo!. The collection is made by a number of
text files (stored, say, in /your/wiki/dir/), which must be recorded in a WikipediaDocumentCollection
as follows:

find /your/wiki/dir/ -type f \
 java it.unimi.di.big.mg4j.document.WikipediaDocumentCollection wiki.collection

Similarly to a FileSetDocumentCollection, the serialized collection will contain references to the files and
also a compacted representation of pointers to the start of each record in each file. You can now index as
before, and invoke Query. In this particular case, we use tokens and some semantic tagging.

java it.unimi.di.big.mg4j.query.Query -h \
 -c wiki.collection wiki-token wiki-WSJ

We're now ready. For instance, the query

Washington ^ WSJ:(B\-E\:PERSON | B\-I\:PERSON)

will search for "Washington", but only in those positions that have been marked as person names. This
happens because the alignment operator solves the left query, and then keeps just those results whose

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 6 of 20

happens because the alignment operator ^ solves the left query, and then keeps just those results whose
positions are the same as those of the second query, which can be on a completely different index. Note
that the left and right query of an alignment operator are completely arbitrary, and the overall query is a
standard query on the first index. Thus,

"(Washington ^ WSJ:(B\-E\:PERSON | B\-I\:PERSON)) was"

would search for "Washington" as a person name, but only if immediately followed by "was".

If you click on the title of a result, you will be brought to the corresponding Wikipedia page, as the factory
embodied in the WikipediaDocumentCollection sets the document URI to the Wikipedia page. If you want
a more technical view of what's happening, you can use the GenericItem class, which will display in a very
simple manner the content of all fields.

Another interesting property of the Wikipedia examples is the end-of-sentence markers (¶) are indexed.
You can use another fairly exotic operator, Brouwerian difference, to restrict your results to queries that are
true inside a sentence. The semantics of query in MG4J is a set of minimal intervals that represent region of
text that satisfy the query. For instance, for the query was killed the intervals describe the smallest
regions of text in which was and killed do appear. But the difference operator (a minus) will eliminate the
intervals generated by the left query that contain one or more interval from the right query. Thus,

was killed - ¶

will perform the same search, but we will see only those results for which there are regions of text not
containing ¶. In other words, results will be restricted to be within a sentence, as matches (i.e., again,
regions of text) that cross sentence borders will be killed by the difference operator.

Finally, the index remapping operator comes handy in two situations: display the results of a field using
another, parallel field, or applying positional operators to results from different fields. If you search for
WSJ:(B\-E\:PERSON | B\-I\:PERSON), the resulting snippets will be rather ugly:

Document #205 [2.000000] Protected_areas_of_Tasmania
WSJ: ...0 0 0 B-N:CARDINAL I-N:CARDINAL I-N:CARDINAL I-N:CARDINAL
0 B-E:PERSON I-E:PERSON 0 0 0 0 0 B-N:CARDINAL 0 ...

Document #258 [1.999152] List_of_people_by_name:_Kea-Kel
WSJ: ? 0 0 B-E:PER_DESC 0 0 0 B-E:PERSON ? 0 0 0 0 0 ? 0 ...

This is correct, as MG4J is displaying results from the WJS field. It is however easy to remap those results to
another index: if we try (WSJ:(B\-E\:PERSON | B\-I\:PERSON)){{WSJ->token}}, the result will be like

Document #205 [2.000000] Protected_areas_of_Tasmania
token: ...but it contains no fewer than 495 separate Protected Areas
with a total area of 22 , ...

Document #258 [1.999152] List_of_people_by_name:_Kea-Kel
token: ? List of people by name : Kea-Kel ? Access to rest of list ? Access ...

Snippets are now represented using the parallel content of the token field.

Assume now that we want to find a person's name immediately followed by the term "was". A direct attemp
would be trying the query "WSJ:(B\-E\:PERSON | B\-I\:PERSON) was": the result would be an error
message ("The phrase operator requires subqueries on the same index"). This is correct, because intervals
returned by the two subqueries of the phrasal operators are on different indices—mixing them makes no
sense. However, if you're sure that you are handling indices on parallel texts, the idea does make sense,
and we can convince MG4J about this as follows:

{token, WSJ}>"(WSJ:(B\-E\:PERSON | B\-I\:PERSON){{WSJ->token}}) (token:was)"

Document #225 [1.996363] Days_of_our_Lives
token: ...family tree by way of SORAS . ? Abby was rapidly aged to a teenager . ? Abby ...

Document #467 [1.995153] Airey_Neave

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 7 of 20

 4.3

 Chapter 2:

 1

Document #467 [1.995153] Airey_Neave
token: ...in Northern Ireland . ? In 1975 , Neave was the campaign manager for Margaret Thatcher 's victorious ...

In this example, we qualified also "was" with an index selector to avoid problems in case multiplexing is on.

A TREC index
In this section we discuss thoroughly the construction of an index based on the TREC GOV2 collection (Text
REtrieval Conferences are series of events organized by the National Institute of Standards and Technology
to evaluate scientifically and reproducibly systems for information retrieval). TREC collections must be
bought to be used, but they are very commonly used for scientific work. In this example we use a
TRECDocumentCollection to index GOV2 (25 million web pages). Be warned that different collections have
slightly different formats, and TRECDocumentCollection might need some tweaking to work with them (we
are making it more and more flexible on a per-request basis).

GOV2 data comes as a list of files in directories named GX000, GX001, and so on. The file themselves are
zipped (you can create the collection with unzipped files, however, if you want faster access).

find GX??? -iname *.gz | \
 java it.unimi.di.big.mg4j.document.TRECDocumentCollection \
 -f HtmlDocumentFactory -p encoding=ISO-8859-1 -z trec.collection

After some grinding, you'll get the collection. Note that this process is mainly useful for accessing later the
collection in a random fashion—for instance, to generate snippets.

Since we want to index anchor text, we must now generate URIs that will represent each document.

java it.unimi.di.big.mg4j.tool.ScanMetadata -S trec.collection -u trec.uris

Note the -U option. GOV2 contains many duplicate (and even triplicate) URLs, modulo trivial normalizations
such as adding a bar after the host name. The -U option is a very crude way of making them unique. (A
more principled mechanism would involve merging all documents with identical URLs, but that should have
been addressed when GOV2 was built.)

We are now ready to build our index:

java it.unimi.di.big.mg4j.tool.IndexBuilder -S trec.collection \
 -t snowball.PorterStemmer -a -v anchor:trec.vdr trec

We set a rather large batch size, assuming that a lot of memory is available. As we said, Scan will try to
detect low-memory conditions and dump batches automatically, but you can lower the batch size, in case
you run into out-of-memory errors. We also require a downcasing Porter stemmer (all Snowball-based
stemmers downcase terms). Beware again: you will be generating hundreds of batches, so you must be
able to open a few thousand files in the combination phase. When the indexing process is completed, you
can query the index as usual.

Behind the scenes: The indexing
process

Introduction
The main point of MG4J is the construction of inverted indices: an inverted index is just like the index you
can find at the end of a book is a list of the occurrences in the text of every term. Building an inverted
index is a complex process that MG4J perform essentially in two phases. Furthermore, there is another
step that is called term map construction that is optional, depending on the kind of functionalities you
require of your index.

Besides traditional indices, MG4J provides payload-based indices, which are used to store metadata
associated to documents such as dates, integers, and so on.

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 8 of 20

 2

"
"

In this chapter we will try to dissect the whole process to give you an idea of what happens when you run
the Index class.

Preamble: terms, dictionaries and term-related maps
Before starting our description of the indexing process, a brief introduction is necessary to present some
basic concepts. MG4J has to do with documents (e.g., HTML files, mail messages etc.), and every
document is composed by fields (e.g., the fields of a mail message will probably be its subject, sender,
recipient, body etc.). Although, as we shall see, MG4J will provides support for non-textual fields, its
"bread and butter" is with textual fields, and for the time being we shall assume that we are dealing with
documents composed of just one textual field.

A textual field (in our simplified view: a document) is a sequence of words: it is up to the factory producing
the document to decide how to choose words (e.g., one may want to discard digits or not), and how to
segment the document. For instance, the typical letter-to-nonletter transition used to split Western
languages does not work very well with, say, Chinese. However, once segmentation has produced suitable
words, they must be turned into indexable terms: for instance, you may want to downcase your words, but
at the same time you may want to keep "ph" (as in "this soap's ph") separated from "Ph" (as in "Ph.D.
degree"). You may also want to make more dramatic transformations, such as stemming, or avoid indexing
a term altogether. All these operation are performed by a term processor, which can be specified on the
command line. The option --downcase, for instance, selects for you the class
it.unimi.di.big.mg4j.index.DowncaseTermProcessor. The chosen processor is recorded into the
index structure: this is essential for interpreting queries correctly.

Note that in the design of other search engines segmentation and processing are somehow mixed into a
generic tokenisation phase. We prefer to split clearly between linguistic and algorithmic term processing.
Linguistic processing depends only on the writing customs of a language, whereas algorithmic processing
might be language neutral (we do not exclude, however, that it might be language dependent, too).

If you scan the whole document collection, you can collect all terms that appear in it; the set of all such
terms is called the term dictionary. Note that every term in the dictionary appears in some (at least one)
document, and probably it will appear in many documents, possibly even many times in some documents.
(By the way: terms that appear in just one document are called hapax legomena, and they are far more
frequent than one might expect in many collections, especially due to typos).

MG4J, like any other indexing tool, does not treat internally terms as character sequences, but it uses
numbers. This means that terms in the dictionary are assigned an index (a number between 0 and the
dictionary size minus 1), and that this index is used whenever the application needs to refer to a term.
Usually, indices are assigned in lexicographical order: this means that index 0 is assigned to the first term
in lexicographic order, index 1 to the next one and so on). The assignment between terms and indices is
stored in a suitable data structure, that compactly represents both the dictionary and the map.

There are many possible different representations of this assignment, each with certain memory
requirements and each allowing different kind of access to the data.

The simplest kind of representation of a dictionary is the term list: a text file containing the whole
dictionary, one term per line, in index order (the first line contains term with index 0, the second line
contains term with index 1 etc.). This representation is not especially efficient, and access-time is
prohibitive for most applications. Usually, a file containing the term list is stemmed with .terms; if the
terms are not sorted lexicographically, the file is stemmed with .terms.unsorted.

A much more efficient representation is by means of a monotone minimal perfect hash function: it is a
very compact data structure that is able to answer correctly to the question What is the index of this
term? (more presicely, "What is the lexicographical rank of this term in the term list?"). You can build
such a function from a sorted term list using the (main method of) implementations available in Sux4J.

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 9 of 20

" "

"
"

"
"

 3

Monotone minimal perfect functions are very efficient and compact, but they have a serious limit. As
we said before, they can answer correctly to the question What is the index this term? , but only for
terms that appear in the dictionary. In other words, if the above question is posed for a term that does
not appear anywhere, the answer you get is completely useless. This is not going to cause any harm, if
you are sure that you will never try to access the function with a term that does not belong to the
dictionary, but it will become a nuisance in all other cases. To solve this problem, you can sign the
function. A signed function will answer with a special value (-1) that means the word is not in the
dictionary . You can sign any function using the signing classes in dsiutils (e.g.,
ShiftAddXorSignedFunction).

Signed and unsigned monotone minimal perfect hash functions are ok, as long as you don't need to
access the index with wildcards. Wildcard searches require the use of a prefix map. A prefix map is
able to anwer correctly to questions like What are the indices of terms starting with these
characters? . This is meaningful only if the terms are lexicographically sorted: in this case, the indices
of terms starting with a given prefix are consecutive, so the above question can be answered by giving
just two integers (the first and the last index of terms satisfying the property). You can build a prefix
map by using the main method of one of the implementation of the PrefixMap interface, e.g.,
ImmutableExternalPrefixMap from dsiutils—actually, this is exactly what happens when you use
IndexBuilder, albeit you can specify a different class for the term map using an option.

Scan: Building batches
In this step, MG4J scans the whole document collection producing the so-called batches. Batches are
subindices limited to a subset of documents, and they are created each time the number of indexed
documents reaches a user-provided threshold, or when the available memory is too little.

An occurrence is a group of three numbers, say (t,d,p), meaning that term with index t appears in
document d at position p. Here, both the term and document are represented by a long integer, called, in
the second case, the document pointer, which is in most cases the position of the document in the
document collection (0 for the first document, 1 for the second document and so on). Position is an integer
that represents where the term occurs in the document.

To understand what the scanning phase really does, suppose you have three documents:

Document pointer Document

0 I love you

1 God is love

2 Love is blind

3 Blind justice

Here is the dictionary produced initially by the scanning phase:

Term index Term

0 blind

1 god

2 i

3 is

4 justice

5 love

6 you

Now, at least conceptually, this is the list of occurrences:

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 10 of 20

Now, at least conceptually, this is the list of occurrences:

Occurrences (in the same order as they are found when scanning the documents)

(2,0,0) (5,0,1) (6,0,2) (1,1,0) (3,1,1) (5,1,2) (5,2,0) (3,2,1) (0,2,2) (0,3,0) (4,3,1)

This simply means that:

term 2 (I) appears in document 0 at position 0;

term 5 (love) appears in document 0 at position 1;

term 6 (you) appears in document 0 at position 2;

and so on. Inverted lists can now be obtained by re-sorting the occurrences in increasing term order, so
that occurrences relative to the same term appear consecutively:

Term Occurrences

0 (blind) (0,2,2) (0,3,0)

1 (god) (1,1,0)

2 (i) (2,0,0)

3 (is) (3,1,1) (3,2,1)

4 (justice) (4,3,1)

5 (love) (5,0,1) (5,1,2) (5,2,0)

6 (you) (6,0,2)

Now, the indexer must:

scan all documents and extract occurrences;

if the list of terms have not yet been obtained, gather new terms as they are found;

sort the terms in alphabetical order, renumbering all occurrences correspondingly;

(if required) renumber the documents and sort them in increasing order,

sort, at least partially, the occurrences found in increasing term order;

when the number of accumulated documents reaches a given threshold, create a subindex containing
the current batch of occurrences.

The last point needs further explanation. Since occurrences are a lot it is not reasonable to think that they
can be all kept in memory. What the indexing pass does is keeping an internal batch where occurrences
are stored as they are found; when the batch is full, it is ordered by term, and flushed out on disk under
the form of a subindex. Every batch will be in term order, but different batches may (and usually, will)
contain occurrences of the same termG.

Getting back to the example given in Chapter 1, where we indexed the collection javadoc.collection,
the basename of the resulting index is going to be javadoc (as usual, completed with the field name). After
running IndexBuilder, we get the following files:

-rw-r--r-- 1 vigna vigna 430 May 13 12:02 javadoc-text.cluster.properties
-rw-r--r-- 1 vigna vigna 144 May 13 12:02 javadoc-text.cluster.strategy
-rw-r--r-- 1 vigna vigna 20k May 13 12:02 javadoc-text.frequencies
-rw-r--r-- 1 vigna vigna 29k May 13 12:02 javadoc-text.globcounts
-rw-r--r-- 1 vigna vigna 1.1M May 13 12:02 javadoc-text.index
-rw-r--r-- 1 vigna vigna 52k May 13 12:02 javadoc-text.offsets
-rw-r--r-- 1 vigna vigna 5.8M May 13 12:02 javadoc-text.positions
-rw-r--r-- 1 vigna vigna 54k May 13 12:02 javadoc-text.posnumbits
-rw-r--r-- 1 vigna vigna 387 May 13 12:02 javadoc-text.properties
-rw-r--r-- 1 vigna vigna 9.4k May 13 12:02 javadoc-text.sizes
-rw-r--r-- 1 vigna vigna 1.2k May 13 12:02 javadoc-text.stats

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 11 of 20

-rw-r--r-- 1 vigna vigna 1.2k May 13 12:02 javadoc-text.stats
-rw-r--r-- 1 vigna vigna 175k May 13 12:02 javadoc-text.termmap
-rw-r--r-- 1 vigna vigna 412k May 13 12:02 javadoc-text.terms
-rw-r--r-- 1 vigna vigna 14k May 13 12:01 javadoc-text@0.frequencies
-rw-r--r-- 1 vigna vigna 19k May 13 12:01 javadoc-text@0.globcounts
-rw-r--r-- 1 vigna vigna 3.8M May 13 12:01 javadoc-text@0.index
-rw-r--r-- 1 vigna vigna 40k May 13 12:01 javadoc-text@0.offsets
-rw-r--r-- 1 vigna vigna 37k May 13 12:01 javadoc-text@0.posnumbits
-rw-r--r-- 1 vigna vigna 342 May 13 12:01 javadoc-text@0.properties
-rw-r--r-- 1 vigna vigna 4.7k May 13 12:01 javadoc-text@0.sizes
-rw-r--r-- 1 vigna vigna 264k May 13 12:01 javadoc-text@0.terms
-rw-r--r-- 1 vigna vigna 11k May 13 12:02 javadoc-text@1.frequencies
-rw-r--r-- 1 vigna vigna 15k May 13 12:02 javadoc-text@1.globcounts
-rw-r--r-- 1 vigna vigna 2.7M May 13 12:02 javadoc-text@1.index
-rw-r--r-- 1 vigna vigna 31k May 13 12:02 javadoc-text@1.offsets
-rw-r--r-- 1 vigna vigna 29k May 13 12:02 javadoc-text@1.posnumbits
-rw-r--r-- 1 vigna vigna 342 May 13 12:02 javadoc-text@1.properties
-rw-r--r-- 1 vigna vigna 4.5k May 13 12:02 javadoc-text@1.sizes
-rw-r--r-- 1 vigna vigna 213k May 13 12:02 javadoc-text@1.terms
-rw-r--r-- 1 vigna vigna 3.1k May 13 12:02 javadoc-text@2.frequencies
-rw-r--r-- 1 vigna vigna 4.2k May 13 12:02 javadoc-text@2.globcounts
-rw-r--r-- 1 vigna vigna 234k May 13 12:02 javadoc-text@2.index
-rw-r--r-- 1 vigna vigna 10k May 13 12:02 javadoc-text@2.offsets
-rw-r--r-- 1 vigna vigna 9.3k May 13 12:02 javadoc-text@2.posnumbits
-rw-r--r-- 1 vigna vigna 336 May 13 12:02 javadoc-text@2.properties
-rw-r--r-- 1 vigna vigna 221 May 13 12:02 javadoc-text@2.sizes
-rw-r--r-- 1 vigna vigna 80k May 13 12:02 javadoc-text@2.terms
-rw-r--r-- 1 vigna vigna 429 May 13 12:02 javadoc-title.cluster.properties
-rw-r--r-- 1 vigna vigna 144 May 13 12:02 javadoc-title.cluster.strategy
-rw-r--r-- 1 vigna vigna 1.5k May 13 12:02 javadoc-title.frequencies
-rw-r--r-- 1 vigna vigna 1.5k May 13 12:02 javadoc-title.globcounts
-rw-r--r-- 1 vigna vigna 25k May 13 12:02 javadoc-title.index
-rw-r--r-- 1 vigna vigna 5.2k May 13 12:02 javadoc-title.offsets
-rw-r--r-- 1 vigna vigna 9.9k May 13 12:02 javadoc-title.positions
-rw-r--r-- 1 vigna vigna 1.6k May 13 12:02 javadoc-title.posnumbits
-rw-r--r-- 1 vigna vigna 376 May 13 12:02 javadoc-title.properties
-rw-r--r-- 1 vigna vigna 2.5k May 13 12:02 javadoc-title.sizes
-rw-r--r-- 1 vigna vigna 1.1k May 13 12:02 javadoc-title.stats
-rw-r--r-- 1 vigna vigna 31k May 13 12:02 javadoc-title.termmap
-rw-r--r-- 1 vigna vigna 61k May 13 12:02 javadoc-title.terms
-rw-r--r-- 1 vigna vigna 752 May 13 12:01 javadoc-title@0.frequencies
-rw-r--r-- 1 vigna vigna 752 May 13 12:01 javadoc-title@0.globcounts
-rw-r--r-- 1 vigna vigna 11k May 13 12:01 javadoc-title@0.index
-rw-r--r-- 1 vigna vigna 2.1k May 13 12:01 javadoc-title@0.offsets
-rw-r--r-- 1 vigna vigna 791 May 13 12:01 javadoc-title@0.posnumbits
-rw-r--r-- 1 vigna vigna 329 May 13 12:01 javadoc-title@0.properties
-rw-r--r-- 1 vigna vigna 1.2k May 13 12:01 javadoc-title@0.sizes
-rw-r--r-- 1 vigna vigna 32k May 13 12:01 javadoc-title@0.terms
-rw-r--r-- 1 vigna vigna 761 May 13 12:02 javadoc-title@1.frequencies
-rw-r--r-- 1 vigna vigna 761 May 13 12:02 javadoc-title@1.globcounts
-rw-r--r-- 1 vigna vigna 11k May 13 12:02 javadoc-title@1.index
-rw-r--r-- 1 vigna vigna 2.1k May 13 12:02 javadoc-title@1.offsets
-rw-r--r-- 1 vigna vigna 883 May 13 12:02 javadoc-title@1.posnumbits
-rw-r--r-- 1 vigna vigna 330 May 13 12:02 javadoc-title@1.properties
-rw-r--r-- 1 vigna vigna 1.2k May 13 12:02 javadoc-title@1.sizes
-rw-r--r-- 1 vigna vigna 29k May 13 12:02 javadoc-title@1.terms
-rw-r--r-- 1 vigna vigna 41 May 13 12:02 javadoc-title@2.frequencies
-rw-r--r-- 1 vigna vigna 41 May 13 12:02 javadoc-title@2.globcounts
-rw-r--r-- 1 vigna vigna 400 May 13 12:02 javadoc-title@2.index
-rw-r--r-- 1 vigna vigna 91 May 13 12:02 javadoc-title@2.offsets
-rw-r--r-- 1 vigna vigna 44 May 13 12:02 javadoc-title@2.posnumbits
-rw-r--r-- 1 vigna vigna 320 May 13 12:02 javadoc-title@2.properties
-rw-r--r-- 1 vigna vigna 57 May 13 12:02 javadoc-title@2.sizes
-rw-r--r-- 1 vigna vigna 1.2k May 13 12:02 javadoc-title@2.terms

As you can see, there are several new files (they could be more or less, depending on the number of

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 12 of 20

 3.1

documents stored on your system): each file whose names starts with javadoc-text@ belongs to a certain
subindex, that was generated using a batch of occurrences. The javadoc-text.properties file contains
global information pertaining all subindices. Other files, such as the .sizes files, contain the list of the
document sizes (the number of words contained in each document). The latter is useful for statistical
purposes, but it might also be used by the indices, to establish better compression methods for the
inverted lists. The .terms files, instead, contains the terms indexed in each batch. Note that each subindex
can be queried separately, albeit you will need to generate manually a term map if you want to write query
by term and not by term number (IndexBuilder creates such a map just for the whole index). The class
it.unimi.dsi.util.ImmutableExternalPrefixMap, for instance, can be used to this purpose.

Now, if you look into the javadoc-text.properties file, you will find some information:

documents = 4090
terms = 32634
postings = 976736
maxcount = 3425
indexclass = it.unimi.di.big.mg4j.index.FileHPIndex
skipquantum = 0
skipheight = 8
coding = FREQUENCIES:GAMMA
coding = POINTERS:DELTA
coding = COUNTS:GAMMA
coding = POSITIONS:DELTA
termprocessor = it.unimi.di.big.mg4j.index.DowncaseTermProcessor
batches = 3
field = text
size = 57884884
maxdocsize = 53057
occurrences = 4599358

You can see some the overall number of occurrences (4599358), the number of batches (3) and the
maximum size (number of words) of a document (53057). Similar information is available on a per-batch
basis looking at the remaining .properties files.

The files starting with javadoc-text.cluster present a cluster view of the set of batches just built.
Essentially, they provide dynamic access to the entire set of batches as a single index. More information
can be found in the documentation of the package it.unimi.di.big.mg4j.index.cluster.

Time/space requirements
The scanning phase is, by far, the most time/space consuming. MG4J will work with little memory, but
more memory will make it possible to build larger batches, which can then be merged more quickly and
without opening too many files. You shoiuld set the JVM memory as high as you can go, and a number of
documens per batch that does not cause too many compactions (or most of the time will be spent in the
garbage collector), always keeping in mind that larger batches are better. If you experience
out-of-memory errors (but it shouldn't happen!), just lower the number of documents per batch. Note that
the memory compaction performed by MG4J seems to make the JVM erroneously think that there is too
much garbage collection, sometimes resulting in an OutOfMemoryError due to excessive garbage-collector
overhead. Please use the option -XX:-UseGCOverheadLimit to overcome the problem.

The kind of document sequence is going to influence heavily the indexing time. The best way of providing
data to MG4J is to stream documents to the standard input, separating them with a character (usually,
newline or NUL). This is the default choice if you do not specify explicitly a collection. Other kind of
collections (e.g., database-based collections) might be reasonably efficient, but, for instance, do not
expect great results from document sequences retreving documents directly from the file system one at a
time.

Remember that the indexer will produce a number of subindices, and this number will depend on the
overall number of occurrences (which is, essentially, proportional to the total document size). Combining
these subindices (or accessing them using an on-the-fly index combiner) has a cost in time that increases

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 13 of 20

 4

1.

2.

3.

 5

these subindices (or accessing them using an on-the-fly index combiner) has a cost in time that increases
logarithmically with the number of subindices. Moreover, for each subindex an on-the-fly combiner needs
to allocate buffers, so the memory cost for batch or on-the-fly combination increases linearly with the
number of subindices. The rule of thumb is that you should try to make batches as large as possible, but
you should also check the logs because working with an almost full heap can slow down Java significantly,
and exaggeratly large batches can cause slowdown because of the large number of cache misses.

Combining batches
Once you have the batches, you must combine them in a single index (in the IndexBuilder example,
combination has been handled for you). Note that MG4J allows you to combine any set of indices, which
means, for instance, that if your collection is split in several piece you can index the pieces separately and
combine them later. MG4J distinguish three type of index combination:

Concatenation takes a list of indices and builds a new index as follows: the first document of the
second index is renumbered to the number of documents of the first index, and the others follow;
the first document of the third index is renumbered to the sum of number of documents of the first
and second index, and so on. The resulting index is identical to the index that would be produced
by indexing the concatenation of document sequences producing each index. This is the kind of
combination that is applied to batches, unless documents were renumbered.

Merging assumes that each index contains a separate subset of documents, with non-overlapping
number, and merges the lists accordingly. In case a document appears in two indices, the merge
operation is stopped. Note that no renumbering is performed. This is the kind of combination that
is applied to batches when documents have been renumbered, and each batch contains potentially
non-consecutive document numbers.

Pasting relaxes further the assumptions of merging: each index is assumed to index a (possibly
empty) part of a document. For each term and document, the positions of the term in the
document are gathered (and possibly suitably renumbered). If the inputs that have been indexed
are text files with newline as separator, the resulting index is identical to the one that would be
obtained by applying the UN*X command paste to the text files. This is the kind of combination
that is applied to virtual documents, described in the next section.

Please consult the Javadoc of the package it.unimi.di.big.mg4j.document and of the above classes for
more information.

Virtual fields in MG4J
As we explained, documents usually originate from some stream in the form of byte sequences; every such
sequence representing a document is then interpeted by some document factory that actually maps the
byte sequence into a set of fields. For example, the
it.unimi.di.big.mg4j.document.HtmlDocumentFactory translates a sequence of bytes into a set of
fields, such as the title of the HTML document and its body. The factory deals with all the problems of
translating bytes into characters, of establishing which parts of the document should be retained (e.g., in
the case of HTML, discarding tags), of determining word borders etc.

There are cases, though, when the content of a document actually refers to another document in the
collection: for example, it is well known that a HTML document may contain anchors, that are pieces of text
that link to (and, at least conceptually, refer to) another document, specified via a URI.

As an example, consider the following document, with URI http://foo.bar/one.html:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
 <title>This is document one</title>
 <body>
 <p>Here you can find a document \

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 14 of 20

 5.1

 5.2

 <p>Here you can find a document \
 containing a lot of information about Mongolia.
 </body>
</html>

The piece of text that reads:

document containing a lot of information about Mongolia

is actually an anchor that refers to another document (with URI http://foo.bar/two.html) and this fact
should somehow be made explicit when indexing the collection. For example, in some sense, the word
Mongoliashould be taken as appearing in the document http://foo.bar/two.html, even if it may not
even be mentioned in the text at that page.

This situation is dealt with by MG4J with the special notion of virtual field. Understanding how virtual fields
actually work requires some patience, and some knowledge of the internal organization of document
collections and factories; the reader may want to skip this section, reserving it for later.

Virtual fields and virtual fragments
As we briefly said, every document factory is responsible for turning raw byte sequences into documents.
In particular, every factory transforms a sequence of bytes into a number of fields. Every field has a name
and a type: for example, a document factory for mail documents might contain fields such as subject,
from, to, body, date etc. The type of a field determines which values the field might contain. The two most
important types of fields (and currently the only ones that MG4J is able to index) are textual fields and
virtual fields.

A textual field, as the reader may guess, is just a piece of text, that is recognized as composed by words:
words of a textual fields are the atoms of MG4J indexing system for textual fields. How words are really
singled out from the stream of characters is a subtle problem that is dealt with by something that is called
a word reader in the MG4J jargon, but we reserve a more comprehensive explanation of how this actually
works for later.

Let us consider, instead, virtual fields. To make our explanations more concrete, let us consider the
HTMLDocumentFactory: as we said above, this factory produces fields out of a HTML document. Actually,
the factory has three fields: two of them (text and title) are textual, and one (anchor) is virtual.

A virtual field produces pieces of text that are to be referred to other documents, possibly belonging to the
collection. To establish a precise terminology, let us call referrer the document that we are considering,
and referee the document to which a certain piece of referrer is referring to. Now, the referrer produces in
a virtual field a number of fragments of text, each referring to a certain referee. Hence, the content of a
virtual field is conceptually a list of pairs made by a piece of text (called virtual fragment) and by some
string that is aimed at representing the referee (called the document spec because it should somehow
specify which document we are referring to).

In the case of the HTMLDocumentFactory, the anchor field is the list of all anchors contained in the
document; the document spec is a URL (as specified in the href attribute) whereas the virtual fragment is
the content of the anchor element. To be more precise, the actual implementation of the factory in MG4J
considers not only the content of the anchor, but also some surrounding text, calle the anchor context. This
is only incidental, though: the important point is that a certain piece of text is associated with the document
spec.

Note that as far as document factories are concerned, there is no fixed way to map document spec into
actual references to documents in the collection. This is resolved, in MG4J, by the notion of document
resolver.

Document resolvers
A document resolver is an object that is able to map the document spec produced by some document
factory into actual references to documents in the collection: more precisely, given a document spec, the

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 15 of 20

 5.3

factory into actual references to documents in the collection: more precisely, given a document spec, the
resolver will decide whether the spec really refers to a document in the collection or not, and in the first
case it will find out to which document the spec refers to.

You don't need to deal with document resolvers until you try to index virtual fields. This is something that
actually MG4J does only on demand: this is why in the example of the previous section we ignored the
problem. Indeed, when we issued the command:

java -Xmx256M it.unimi.di.big.mg4j.tool.IndexBuilder \
 --downcase -S javadoc.collection javadoc

we asked MG4J to index only the textual fields of the collection (whose documents were, as you remember,
HTML documents). This means that only titles and texts were indexed, but no anchors (some of you may
have noticed that MG4J emitted a brief warning about this fact, logging that Virtual field anchor is
not being indexed; use -a or explicitly add field among the indexed ones).

Now, if you want to index also anchors you might explicitly ask for it, or you may use the -a option:

java -Xmx256M it.unimi.di.big.mg4j.tool.IndexBuilder \
 -a --downcase -S javadoc.collection javadoc

If you try to do so, you will get an exception, saying that No resolver was associated with virtual
field anchor: to understand the meaning of this exception we need to build a document resolver that is
able to translate the document spec produced for the field anchor by the HTMLDocumentFactory into
references to documents of the collection. Note that every document spec needs a different kind of
document resolver, and you need to know which document resolver fits the needs of a certain virtual field.

In the case of anchors, the job is done by the URLMPHVirtualDocumentResolver class, that turns URLs into
document pointers (i.e., references to documents). To build a URL document resolver, you first need to find
the URLs of the document within your collection; you can list them as follows

java -Xmx256M it.unimi.di.big.mg4j.tool.ScanMetadata \
 -S javadoc.collection -u javadoc.urls

This command scans the whole collection and produces a (text) file called javadoc.urls that contains the
URLs of the collection in their order (of course, the collection URIs must actually be URLs). Note that in the
case of our collections, URLs will actually be just file names.

By the way, you can use ScanMetadata also to extract other information (e.g., the document titles) from
your collection.

Now that you have a list or URLs, one per document, you can build the document resolver you need by
calling:

java -Xmx256M it.unimi.di.big.mg4j.tool.URLMPHVirtualDocumentResolver \
 -o javadoc.urls javadoc-anchor.resolver

This command produces the resolver you need to index your anchor fields. Now, you can try again to index
the whole collection, running:

java -Xmx512M it.unimi.di.big.mg4j.tool.IndexBuilder \
 -a -v anchor:javadoc-anchor.resolver --downcase \
 -S javadoc.collection javadoc

What is a document resolver actually doing: virtual texts and gaps
To understand what we just did, it is useful to think that conceptually all the virtual fragments that refer to
a given document of the collection should be thought of as producing a single text, called the virtual text.
So, for example, all the text of anchors referring to

 should be concatenated and thought of a

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 16 of 20

 6

 Chapter 3:
 1

file:/usr/share/javadoc/java/java/lang/String.html should be concatenated and thought of a
single virtual text that will be indexed as a part of
file:/usr/share/javadoc/java/java/lang/String.html.

Indeed, if you start the query engine again

java it.unimi.di.big.mg4j.query.Query -h -i FileSystemItem \
 -c javadoc.collection javadoc-text \
 javadoc-title javadoc-anchor

you will be able to input queries such as text:implementation AND anchor:buffer that are matched by
all documents that contain the word implementation in their text and the word buffer in (some of their)
anchor(s).

Some caution should be exercised here. When indexing, the virtual text is actually (somehow) built by
concatenating the anchor text. This means that virtual fragments coming from different anchors are actually
concatenated. This fact might produce false positive results. For example, queries like anchor:(buffer
AND long) are matched by documents that contain both the word buffer and the word long in their
anchors, but not necessarily in the same anchor.

To avoid such kinds of false positives, you can play with virtual gaps: the virtual gap is a positive integer,
and it is the virtual space left between different virtual fragments. For example, if the virtual gap is 64 (the
default), anchors are concatenated by leaving 64 "empty words" between subsequent fragments.

Hence, for example, if you input a query like anchor:(buffer AND long)~64 you will be sure that only
documents that contain both words in the same anchor will be found. Of course, this time you might have
false negatives, if some anchor is longer than 64 words. If you want, while indexing you can specify a
different virtual gap; for example:

java -Xmx512M it.unimi.di.big.mg4j.tool.IndexBuilder \
 -a -g anchor:100 -v anchor:javadoc-anchor.resolver \
 --downcase -S javadoc.collection javadoc

runs exactly as before, but leaving a virtual gap of 100 words between successive fragments.

Payload-based indices
MG4J provides a special kind of index, called payload-based index, that is used to store not text but
rather metadata (dates, integers, etc.) related to a document. It is the default way of storing non-textual
fields. Essentially, a payload-based index leverages the structure of a text-based index: it has no counts
or positions, but each posting has a payload—a piece of data related to the document referred by the
posting. In this way, by creating an index with a single posting list (related to the term #) we are effectively
storing metadata related to each document. The main advantage of this approach is that we get almost for
free the sophisticated skipping structure of MG4J's indices, and support for splitting, combination, and so
on.

From the user viewpoint there is no particular difference between standard and payload-based indices,
except that the latter do not provide some files that would be nonsensical, such as the file of sizes or the
global occurrence count, and that searching a payload-based index is rather different form searching an
index (instead of term-based operators and Boolean combinators you just get range queries).

Performance
Indexing Time

MG4J provides a great flexibility in index construction. For instance, you can choose several different codes
for the components of the index, and moreover you can decide to drop parts you are not going to use
(e.g., positions). All these choices have a significant impact on performance. Building a collection during the
indexing phase will of course slow down the whole process.

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 17 of 20

 2

 3

indexing phase will of course slow down the whole process.

In general building large batches is a good idea if you have a lot memory; you can set the tentative batch
size using the -s option. However, if your collection contains a large number of terms (e.g., if it contains
many hapax legomena—terms that occur just once in the collection) a very large number of objects will be
generated. This can cause a massive amount of garbage collection if you're relatively tight on memory. For
this reason, there is a limit on the number of terms indexed at once (see the -M option of IndexBuilder
and Scan).

Setting up the index structure
In MG4J, you can choose the codes used for compression. As a general rule, nonparametric codes are
quicker than parametric codes. Thus, Golomb codes for document pointers have an excellent compression
rate, but δ codes have very good compression, too, and can be decoded more quickly. The point here is
that for unary, γ, shifted γ and δ codes MG4J uses precomputed decoding tables that speed up
decompression by an order of magnitude. The default choice (γ for frequencies, δ for pointers, γ for
counts, and δ for positions) is very reasonable. For maximum speed you could even try to use γ
everywhere (as it is quicker to decode if the precomputed decoding tables fail).

Another important trick is that of discarding what you don't need. The default MG4J index type is called
high-performance: it contains all information (pointers, counts, positions) but it is only partially
interleaved―positions are kept in a separate file. This satisfies most needs, but If you are just using BM25
or TF/IDF scoring, there is no need to store positions in your index: you can force a standard, interleaved
index, and store just what you need (e.g., -cPOSITIONS:NONE will eliminate positions from the index).

By default, indices contain a skipping structure that makes skipping index entries faster. Skipping
structures introduce a slight overhead when scanning sequentially a list (so you should disable them using
the --no-skips option if you don't need them), but in general they make query processing significantly
faster. Skipping structure are based on two parameters: the quantum q and the height h. The quantum
dictates how often the skipping structure should index positions in the inverted list. The height dictates how

far the skipping structure is able to jump in one shot (an index is able to skip in one shot as far as q2h).
However, as h grows the memory required to build the skip structures grow exponentially: the rule of
thumb is setting h as large as possible without incurring in out-of-memory errors.

Sizing the quantum is a more complex issue, as it depends on the structure of the inverted list. Dense
inverted lists require smaller quanta. Since version 3.0, MG4J makes it possible to just specify the
percentage of the index size occupied by the skipping structure, and let some machinery compute the
correct quantum. You can also specify a quantum explicitly, but it will be the same for all lists, which is
usually not a good thing.

Setup Time
Once the index has been created, there are many ways in which you can improve query resolution time.
First of all, an index can be read from disk, memory-mapped, or directly loaded into main memory. These
three solutions work with increasing speed and increased main memory usage. The default is to read an
index from disk, but you can add suitable options to the index URI (e.g., mapped=1 or inmemory=1―see
the Index.UriKeys documentation) to force your preferences. Analogously, offsets are necessary to locate,
inside the index file, the posting list of a certain term. By default they are read from disk using a
SemiExternalOffsetList, but you can load them in memory if you prefer so. If you load sizes (e.g.,
because you want to run a scorer that needs them) there is a suitable URI option (e.g., succinctsizes=1)
that will load sizes in a highly compact format. This is particularly useful when pasting large indices.

To get more options, you can partition your index. Once you have a cluster formed by several sub-indices,
you can decide which sub-indices go to memory, which will be mapped, and so on.

An important source of delay in loading the index is the expansion of the dump file of an
, which is the default term map generated by . The dump file

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 18 of 20

 4

 Chapter 4:
 1

ImmutableExternalPrefixMap, which is the default term map generated by IndexBuilder. The dump file
must be copied from the serialized representation to a temporary directory, and for large collections the
process can be very slow. The solution is either to use a different term map (e.g., some kind of signed
hash—see the minimal perfect hash classes of Sux4J) to generate (either programmatically or using the
main method of ImmutableExternalPrefixMap) a non-self-contained, synchronized instance of
ImmutableExternalPrefixMap and save it using the standard suffix for term maps. Such an instance is
based on a separate dump file that must be attached to the deserialized instance before usage (see the
documentation for details). You can attach the dump stream by invoking

((ImmutableExternalPrefixMap)index.termMap).setDumpStream(filename);

with the appropriate argument.

Query Time
Once you are convinced that your setup is reasonable you should generate a wired
BitStreamIndexReader/BitStreamHPIndexReader. The latter are the generic classes used by MG4J to
read an index: thus, they incorporates all the logic required to handle literally hundreds of types of indices.
However, you can use the Ruby script genbitstreamreaders.rb provided with MG4J to generate
additional instances that are wired to a specific index type. When loading an index, MG4J will fetch
dynamically (by reflection) the wired class and will log (at INFO level) that it is using a wired class instead of
the generic class. (The standard MG4J distribution contains wired classes for the default index-construction
options.)

The Ruby script above prints a list of commands involving a C compiler (by default, gcc). Actually, the
commands use the C preprocessor to filter a driver file contained in the source tree
(BitStream[HP]IndexReader.c). Executing the output of the Ruby script will generate all possible wired
classes (hundreds), but you can also select manually the classes you prefer to generate.

The simplest way to understand the wiring process is having a look at the output of the Ruby script:
essentially, defining the symbol GENERIC you obtain the generic driver. Otherwise, you can define symbols
SKIPS and PAYLOADS if you want these features, and then you must specify assertions with name
frequencies, pointers, counts, and positions that either select a code or disable a feature (as in
Combine's command line options). The symbol CLASSNAME defines the wired class name, and must be
generated following the algorithm contained in the Ruby script, or MG4J will mistakenly load wired classes
that are not adapt for your index.

Clusters & Partitioning
Documental vs. Lexical

MG4J provides a completely generic way of combining indices into clusters. This feature can be used, for
instance, to support incremental indexing, but it goes way beyond that. An index is just a composite in the
design-pattern sense, and can be built by combining different indices. For instance, you can index
separately two sets of documents and then use the two resulting indices as a single index using a
concatenation-based cluster index. Alternatively, you can actually combine the indices, getting a new index.

More generally, a cluster exhibits a set of local indices as a single global index. Clusters, moreover, can be
documental or lexical. In a documental cluster, each document of the global index appears exactly once in
each local index. In a lexical cluster, each term of the global index appears exactly once in each local
index. These two types of clusters satisfy different needs: documental clusters, for instance, can be used to
keep a set of documents with high static rank in a separate index living on faster storage, whereas lexical
cluster can be used to load in memory the inverted lists of terms that appear more frequently in user
queries.

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 19 of 20

 2

 3

 Chapter 5:

Partitioning vs. Clustering
The opposite of clustering is partitioning. Partitioning an index means dividing its inverted lists using some
criterion, and, not surprisingly, partitioning can be documental or lexical. MG4J provides tool that make it
possible partitioning using a custom strategy specified by a Java class, so it is very easy to process indices
(even large indices) and partition them in several ways (obvious splitting strategies, such as uniform
strategies, are actually built-in). You should try the PartitionDocumentally and PartitionLexically
tools to get an idea of what can be donem and have a look at the documentation of the
it.unimi.dsi.m4j.cluster package.

Of course, the suite of combination tools used to combine batches can be used for the opposite
process―taking the set of local indices making up a cluster and turning them into a single combined index,
which will contain the same data of the original cluster, but in a different format. Clusters, partitioning and
combining are thus several facets of the same idea―that is, that an index is actually a composite object.

Creating a Cluster
A cluster is simply defined by a property file having property indexclass equal to the suitable cluster class
(e.g., it.unimi.di.big.mg4j.index.cluster.DocumentalConcatenatedCluster), a clustering strategy
specified by the property strategy and one localindex property for each local index (see also the
documentation of it.unimi.di.big.mg4j.index.cluster.IndexCluster). You can run IndexBuilder
with the --keep-batches option to have a look at the generated cluster files, which expose the batches as
a single index.

Accessing MG4J indices
programmatically
Constructing an index and querying it using the Query class is fine, but usually MG4J must be integrated in
some kind of environment. In this chapter we describe how to access programmatically an index using
MG4J. A (small but growing) list of heavily commented examples is available in the
it.unimi.di.big.mg4j.example package.

In general, the first thing you need is to load an index. To do that, you must use the Index.getInstance()
method, which will arrange for you a number of things, like finding the right index class, possibly loading a
term map, and so on. Usually you will have more than an index (e.g., title and main text).

The second piece of information that is necessary for the following phases is an index map—a data
structure mapping a set of symbolic field names, which will be used to denote the various indices, to the
actual indices (e.g., to the actual instances of the Index class). There are simple ways to build such maps
on the fly using fastutil classes (see the RunQuery example). Another important map is the map of term
processors, which maps each field name to the respective term processor. Usually the term processor is
the one used to build the index, which can be recovered from the Index instance, but different choices are
possible

There are now several ways to access MG4J. Given a textual query, the query is parsed and turned into an
internal composite representation (essentially, a tree). Then, a builder visitor visits the tree and builds a
corresponding document iterator, which will return the documents that satisfy the query.

At the basis of the query resolution, index iterators provide results from the index (i.e., documents in which
a term appears, and other information): in other words, they are used as iterators corresponding to the
leaves of the query tree. These can be combined in various ways (conjunction, disjunction, etc.) to form
document iterators. Document iterators return documents satisfying the query and, for each document, a
list of minimal intervals representing the regions of text satisfying the query. At that point, scorers are used
to rank the documents returned by the document iterator.

/Users/vigna/pub/java/big/MG4J/manual/manual.xml page 20 of 20

You can handle this chain of events at many different levels. You can, for instance, build your own
document iterators using the various implementations of DocumentIterator. Or you can create queries
(i.e., composite built using the implementations of it.unimi.di.big.mg4j.query.node.Query), and turn
them into document iterators. You can even start from a textual query, parse it to obtain a composite
internal representation, and then go on.

Nonetheless, the simplest way is to use a façade class called QueryEngine that tries to do all the dirty work
for you. A query engine just wants to know which parser you want to use (SimpleParser is the default
parser provided with MG4J), which builder visitor you want to use, and which index map. The builder
visitor is a visitor class that is used to traverse the internal representation of a query and compute the
corresponding document iterator. The default visitor, DocumentIteratorBuilderVisitor, is very simple
but fits its purpose. You might want to change it, for instance, to reduce object creation.

A query engine has many tweakable parameters, that you can find in the Javadoc documentation. However,
its main advantage is that its method process() takes a textual query, a range of ranked results, and a list
in which to deposit them, and does everything for you. You can easily get results from MG4J in this way.

A different route is that of customizing the QueryServlet class that MG4J uses for its HTTP/HTML display.
This might simply involve changing the Velocity script that displays the results (and which is set by a system
variable—see the class HttpQueryServer) or actually modifying the class code.

