MG4J (big): The Manual

MG4J (big): The Manual

Table of Contents

N @ ¥ o o 1H [1Y [7 N 1
BUIldiNg YOUP FIFSE INTEXoieeieieeee et 1
Building @ compressad COHECHIONiiiiiiieieii e e 2
IMIOF OPLIONS ...ttt ettt et e et e e et et e e et et et e et e e e e nb e eee 3
QUENYING MGA ...ttt ettt 4

More SOphiStiCalEd QUETTESeeieiiiee et 5
A SEMANTIC TNAEX ..eiit ettt e e et e e e et e e e eba e eeees 5
A TREC INMOEX ...ttt ettt e e e e e e et a e e e e e e eebaba s 7

2. Behind the scenes: The iNdEXiNg PIrOCESSciiiutueeieii ettt e e ettt e e et eeeett e eent e e eeninaeaees 9
F g1 oTo (8 oi [oo EO PP TPPPPTR 9
Preamble: terms, dictionaries and term-related Mapsccouiiiiiiiiiii e 9
Scan: Building DaIChESoouui e 10

TiME/SPACE FEQUITEIMENESceiiitieeeiii ettt e ettt ettt e et e e e et e e e e e eenees 14
CombiniNg DAECNES ... 15
Virtual fIEldS iN MGA ...t 15

Virtual fields and virtual fragmentsooooeiiiiiiiii e 16

DOCUMENE FESOIVENS ...ttt ettt ettt ettt ettt e e et e e e e e eenans 17

What is a document resolver actually doing: virtual textsand gapsccoveeevvnneeennen. 18
Payload-based INQICEScooiiiii e e e 18

3 PEITOMMANCE ... et 20
INAEXING TIME oottt ettt e ettt e e et et e e e e et e e e eabaneeeees 20
Setting Up the INAEX SITUCTUIEuue et 20
S (1o T T 0= PP PP TPPPRTT 20
QUENY TIIMIE ..ottt et e e ettt e e et et e et e e bt e e e eebar e e e enta e e e enbnaeeeee 21

4. ClUSLErS & PartitiONiNgccuvuieeeitn ettt ettt e ettt e e et e e e et e e e e e e e ea e aene 22
Documental VS, LEXICAlciieiiieiiiii et 22
Partitioning VS, CIUSLEIINGceeuuneiiiiiiee ettt e et e et et e e eena e eeens 22
Crealing @ CIUSLEY ...ttt e e et e e et e e et e et et e e e ena e eeee 22

5. Accessing MGA4J indices programmatiCallyoceeuueiiiiiiiiieiii e 23

Chapter 1. A Quick Tour of MG4J

Building your first index

Indexing in MGA4Jis centered around documents, either exposed by means of sequences or of collections.
For the time being, let us concentrate on collections, which are randomly addressable lists of documents.

Each document in a collection is associated with a title and a URI. Typical titles are filenames, or titles
from HTML documents. URIs can bethe actual URL of apage. To build our first document collection, we
usethe main method of theclassFi | eSet Docunent Col | ect i on, whichalowsto build and seriaize
a set of documents specified by their filenames. As atypical case, we will build a collection out of your
Javadoc documentation directory. Supposing your Javadocsarelocatedin/ usr/ shar e/ j avadoc, you
may try the following:

find /usr/share/javadoc/ -iname *.htm -type f | \
egrep -v "(package-|-tree|class-use|index-.*.htm|allclasses)" | \
java it.unim.di.big.ng4j.docunent. Fil eSet Docunent Col | ection \
-f Htm Docunent Factory -p encodi ng=UTF-8 j avadoc. col | ecti on

Let us try to understand what's happening. We are providing as input to the main method of the class a
list of files, one per line. Moreover, we are specifying (using the - f option) afactory, that is, something
that will turn a pure stream of bytes (provided, in this case, by afile) into a document made by several
fields (for instance, title and main text). The factory needs to know the encoding of the files, and
we are specifying UTF-8 as a property. All this information is serlialised and stored in a file named
j avadoc. col | ecti on. Note that since we are using a standard MG4J factory, we can avoid to write
the full factory classname (i t . uni mi . di . bi g. ng4j . docurent . Ht ml Docurent Fact ory).

If you try and look into thefilej avadoc. col | ect i on, you will discover that thisisindeed atypical,
serialized version of a Java object; note that the file is not going to contain the files that are part of the
collection, but only their name. This means, in particular, that the very existence of the collection will
depend on the existence of the files spanned by the collection; in other words, del eting or modifying any of
theindexed file may cause inconsistencein the collection (and, more importantly, in theindex produced in
thefollowing steps). Thisistrue of almost every collection: document collections may basetheir existence
on some external data (files, web pages, mailbox files etc.), and they usually become inconsistent as soon
as such data are modified, changed or deleted.

It is now time to index our collection. To do so, we simply pass the collection to the main method of the
class| ndexBui | der , which scansall documentsin the collection and produces anumber of indices, one
for each field of the collection. The number of fields depends on the factory used to produce documents: in
our case, wewill getindicesfor thetitle (the content of theHTML t i t | e element, if present; thefilename
isused, instead, if the title element is absent) and the body (the textual content of the entire HTML page).
Additionally, Fi | eSet Docunent Col | ect i on sets the URI of each document to a URI pointing to
the absolute location of the file in the file system; the document title is, once more, going to be the title
appearing in the HTML content.

java it.unim.di.big.ng4j.tool.IndexBuilder \
- - keep- bat ches --downcase -S javadoc. col |l ection javadoc

The class | ndexBui | der has alarge number of options, as it runs in sequence the two phases of the
indexing process. These phases are also available separately, mainly in the case of very large collection
(hundreds of millions of documents) for which the memory limits are rather tight. Note that we did not
specify amemory option, for instance, - - Xnx256M asit is not necessary (and might be even pernicious)

A Quick Tour of MG4J

on newer Java virtual machines, which allocate memory dynamically; if you run into memory problem,
please allow for more memory.

In this example, we have used the - - downcase option that forces all the terms to be downcased: this
means that the index will collapse words that differ only for the presence of upper/lowercase letters. For
example, terms St ri ng and st ri ng will not be distinguished. More generally, you could specify a
different term processor for custom term modification (in this case, the DowncaseTer nPr ocessor

class has been implicitly chosen). The - S option specifies that we are producing an index for the
specified collection (j avadoc. col | ect i on): if the option was omitted, | ndex would expect to index
a document sequence read from standard input (more about this below). The - - keep- bat ches option
is not used normally, but we specify it here so to have alook at the temporary files generated during the
indexing process. The last, unflagged option, j avadoc, is the only mandatory option for | ndex, and it
is the index basename, the basename after which all index files are stemmed.

Since our collection has documents containing two fields, named ti t | e and t ext , there will be two
sets of index files: each will be named, by convention, with the index basename followed by the field
name (separated with a dash). Hence, there will be index files named j avadoc-ti tl e. sonet hi ng
and filesnamed j avadoc-t ext . sonet hi ng.

We have now built indices, and we are ready to query them using aweb server. Thisisvery easy in MGA4J:
we just run the main method of the Quer y class specifying the - h option and passing as argument the
indices and (for showing snippets) the collection:

java it.unim.di.big.nmy4j.query. Qery -h -i FileSystemtem\
-c javadoc. coll ection javadoc-text javadoc-title

We can now either use the command line (if you haverlwrap installed, you can put it to good use), or open
the search page by pointing our browsertoht t p: / /| ocal host : 4242/ Quer y and start querying the
collection. Note that - i option, which specifies what to link to result items: the specified class links a
file in the file system using a local HTTP server (the observation about class names made for factories
applies here, too).

Note that the nameswe specified for theindices(e.g.,j avadoc-t ext) areactually URIs, soyou can add
options much like in aweb query. For instance, j avadoc-t ext ?i nMenor y=1 would load the index
into main memory, whereasj avadoc- t ext ?mapped=1 would try to use low-level memory-mapping
features of the operating system to cache the most frequently used part of the index in main memory.

Building a compressed collection

During theindexing process, it is possible to build a compressed version of the collection used to build the
index itself. There are several waysto do that (and you can program your own). The easy way isto usethe
- B option, which accepts a basename from which various files will be generated. By default, MG4J will
generateaSi npl eConpr essedbDocunent Col | ecti on (but you canwriteyour kind of collection,
provideaDocunent Col | ect i onBui | der forit, and just passit to Scan). For instance,

java it.unim.di.big.ng4j.tool.IndexBuil der \
-B javaconp --downcase -S javadoc. coll ection javadoc

would generate during the indexing process a collection, which would be named
j avaconp. col l ection, that you can pass to Query. The collection is actudly a
Concat enat edDocunent Col | ection that exhibits a set of component instances of
Si npl eConpr essedDocunent Col | ecti on, one per batch (this arrangement makes collection
construction more scalable). This is an important fact to know, because if you move

A Quick Tour of MG4J

j avaconp. col | ecti on somewhere else you will also need to move al files stemmed from
j avaconp@ which contain the component collections.

Note that in this particular case there is no need to build another collection—the
Fi | eSet Docunent Col | ection used to build the index can be happily passed to Query.
This is, however, not always the case, as MG4J builds indices out of sequences—abjects that
expose the data to be indexed in a sequential fashion. A typical example is the default, built-in
| nput St r eamDocunrent Sequence. Assume you have a file docunent s. t xt that contains one
document per line. You can index it as follows:

java it.unim.di.big.ng4j.tool.IndexBuil der \
--downcase -p encodi ng=UTF-8 javadoc <documents.t xt

Note the - p encodi ng=UTF- 8 option, which sets the encoding of the text file. This command will
create asingleindex with field namet ext (you can changethefield namewith another property—seethe
I nput St r eanDocurent Sequence Javadoc). When you query the index, results will be displayed
as numbers (positions in the original text), as Quer y has no access to a document collection. But if you
specify the - B option, you can build on the fly acollection that can be used by Quer y to display snippets.

The kind of collection that is create is customisable. The interface Docurnent Col | ect i onBui | der
specifies what a collection builder should provide to be used at indexing time, and a builder can
be specified with the - - bui | der - ¢l ass option. For instance, by specifying - - bui | der - cl ass
Zi pDocunent Col | ect i onBui | der you will get back the behaviour of the obsoleted - z option—
building aZi pDocunent Col | ect i on.

There are many other collections you can play with—they are contained in the package
it.unim.di.big.ng4j.docunment. There are collections for reading from JDBC databases,
comma-separated files, and so on (and, of course, you can write your own). Some collections | et you play
with other collections: Concat enat edDocunent Col | ect i on exhibitsaset of collection asasingle
collection that concatenates their content. SubDocunent Col | ect i on exhibits a contiguous subset of
documents of a given collection as a new collection. Some of these classes have constructor that follow
dsi util 'sOhj ect Par ser conventions, and thus can be constructed directly for the command line.
Onesuch classisSubDocunent Col | ect i on; thefollowing command line usesthe - o option to build
such acollection on thefly:

java it.unim.di.big.ng4j.tool.IndexBuilder \
--downcase -oSubDocunent Col | ecti on\ (javadoc. col |l ection, 0,10\) m ni

The above command would just index the first ten documents of j avadoc. col | ecti on (see the
Javadoc of SubDocunent Col | ect i on for more details). You can then use the option - o to pass the
same collection to Quer y, or build acompressed collection during the indexing phase.

More options

All tools and classes used so far have alarge number of options that make them highly configurable. For
instance, there are other properties of a factory that can be specified—please have a look at the Javadoc
of the document factory you are using. For instance, a common property iswor dr eader , which makes
it possible to specify a different instance of Wbr dReader —the class that it used to segment text into
words and non-words. The standard Wor dReader (Fast Buf f er edReader) considersjust lettersand
digits as part of a word, but you can choose your variant, and even specify it directly on the command
line: for instance, - pwor dr eader =Fast Buf f er edReader\ (_\) specifiesthat underscores should
be considered as part of aword. More generally, you can specify an expression that followsdsuti | s's
hj ect Par ser conventions and that will be used to instantiate a Wor dReader .

All MG4J tools implement the standard - - hel p option, which will display a detailed help text.

A Quick Tour of MG4J

Querying MG4J

Querying MG4Jiseasy if you already used atext-indexing system. The simplest possible query isasingle
term, e.g., cl ass: the answer that you will obtain by such a query is the set of al documents (in our
case: al filesamong those that have been indexed) that contain theword cl ass (or any other uppercase/
lowercase variant thereof).

There are several additional operators you might want to try:

AND: writing more than oneterm (separated by whitespace) meansthat you want to look for documents
that contain all the specified words (not necessarily in the same order or consecutively); for example,
the query | nput St ream Reader encodi ng means that you want to look for documents that
contain all the given words; you can convey the same meaning by using the operator & (a.k.a. AND),
thuswriting | nput St r eam & Reader & encodi ng instead;

OR: if youwant to write adigunctive query you can usethe operator | (a.k.a. OR); thus, for example,
thequery I nput Stream | Reader | encodi ng meansthat you arelooking for documents that
contain any of the given words;

NOT: you can use the operator ! (ak.a. NOT) to mean negation; thus, for example, the query
I nput Stream & ! Reader means that you are looking for documents that contain the first term
but not the second;

phrase: you can force consecutivity by using quotation marks; thus" | nput St r eam Reader " means
that you want to look for documents that contain these two words consecutively;

proximity restriction: you can limit your search to documents where the words you are searching
appear within a limited portion of the document; this is done with the tilda operator; for example,
(I nput St r eam Reader) ~5 meansthat you arelooking for documents where the two given words
appear (in any order) within 5 words from each other;

ordered AND: writing more than one term separated by < will find documents containing the given
termsin the specified order.

wildcard search: you can perform wildcard searches by appending * at the end of aterm; for example,
t er n* will look for documents containing "term", "terms", "termed" and so on.

parentheses. you can use parentheses to enforce priority when building complex queries; parentheses
are not needed in many cases, but they are necessary, for example, when a boolean query is written
within a phrase; for example, if you want to look for the word | nput St r eamfollowed by Reader
or Wi ter,youwill enter thequery " | nput St ream (Reader | Witer)".

index specifiers: prefixing a query with the name of an index followed by a colon you can restrict the
search to that index. The name of an index is by default the name of the field that it has indexed, so
title: Reader will search for Reader justintitles.

range queries: if you created an index containing payloads (dates, integers, etc.) you can perform range
queries using square brackets and two dots: for instance, assuming the existence of afield dat e the
query [20/2/2007 .. 23/2/2007] will search for documents whose date is between 20
February and 23 February 2007, inclusive.

MG4Jwill emphasise intervals satisfying the query. By clicking on the link of a document, the document
will be opened in the browser.

The description we have just given just scratches the surfaces of the queries you can write with
MG4J. all the operators can be freely combined, obtaining very sophisticated constraints on the

A Quick Tour of MG4J

documents returned. More information on this topic can be found in the documentation of the package
it.unim.di.Dbig.ng4j.search.

More sophisticated queries

MG4J actually provide very sophisticated query tuning. In particular, it provides scorers, which let you
reorder the documents satisying a query depending on some criterion. To use this features, you must use
the command line interface, abeit all settings will be used for the subsequent web queries.

Type $ to get some help on the available options. A basic command is $rrode, which lets you choose the
kind of result: just the document number and title, theintervals, snippets and so on. Some optionsrequirea
full index and a collection (for instance, snippets). The most interesting command, however, is$scor er,
that lets you choose a scorer for your documents. For instance,

$score BMR5Scorer Vi gnhaScorer

reproduces the standard settings, using a BM 25 scorer and a scorer that shows firsts documents satisfying
your queries more frequently and in smaller intervals, linearly combined with equal weight. Scorers are
described in the documentation of the packagei t . uni m . di . bi g. ng4j . sear ch. score.

When you use a scorer, it is a good idea to use multiplexing: when multiplexing is on, each query is
multiplexed to all indices (by default, aquery is directed to thefirst index specified on the command line).
Just type

$mpl ex on

Of course, you can always choose a specific index with the colon notation. Y ou can al so change the weight
of your indices (which is particularly useful when multiplexing):

$wei ght text:1 title:3

In this way, weight-based scorers will usually consider thet i t | e field three times more important than
thet ext field.

You can aso change the way snippets (or intervals) on display are chosen: MG4J provides an interval
selector, aclass that will try to choose the best intervals to be shown. You can set the maximum length
of an interval, and the maximum number of intervals:

$sel ector 3 40

will show at most three intervals, and intervalslonger than 40 characterswill be broken. All these changes
arereflected in the web interface.

If you want to learn more about query resolution, you should have alook at the documentation of the class
it.unim.di.big.ng4j.query. QueryEngi ne, which embodies al the logic used to answer
queriesin MG4J.

A semantic index

For our next example, we will put to good use the semanticaly annotated
snapshot of the English Wikipedia [http://barcelona.research.yahoo.net/dokuwiki/doku.php?
id=semantically_annotated_snapshot_of wikipedia] created at Y ahoo!. The collection exhibits Wikipedia
articles as a number of parallel texts, one of which is the sequence of tokens, whereas others provide
information like "this token is a person's name". MG4J provides an alignment operator that can be used
with parallel texts to align results of two queries—in practise, you can ask which results of an arbitrary

http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=semantically_annotated_snapshot_of_wikipedia
http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=semantically_annotated_snapshot_of_wikipedia
http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=semantically_annotated_snapshot_of_wikipedia
http://barcelona.research.yahoo.net/dokuwiki/doku.php?id=semantically_annotated_snapshot_of_wikipedia

A Quick Tour of MG4J

guery match certain semantic conditions. The support hasafew rough edges, but it'san interesting example
nonetheless.

First of al, you must get the collection, for instance through Yahoo!. The collection is made
by a number of text files (stored, say, in /your/w Ki/dir/), which must be recorded in a
W ki pedi aDocunent Col | ect i on asfollows:

find /your/wiki/dir/ -type f \
java it.unim.di.big.ng4j.docurment.Wki pedi aDocunent Col | ection wi ki.collection

SimilarlytoaFi | eSet Docunent Col | ect i on, theserialized collection will contain referencesto the
files and also a compacted representation of pointersto the start of each record in each file. Y ou can now
index as before, and invoke Quer y. In this particular case, we use tokens and some semantic tagging.

java it.unim.di.big.ng4j.query.Qery -h\
-c wiki.collection wiki-token w ki-W5J

WEe're now ready. For instance, the query
Washi ngton ~ WBJ: (B\-E\: PERSON | B\-1\: PERSON)

will search for "Washington", but only in those positions that have been marked as person names. This
happens because the alignment operator ~ solves the left query, and then keeps just those results whose
positions are the same as those of the second query, which can be on a completely different index. Note
that the left and right query of an alignment operator are completely arbitrary, and the overall query isa
standard query on the first index. Thus,

"(Washington ~ WBJ: (B\-E\: PERSON | B\-I\: PERSON)) was"
would search for "Washington" as a person name, but only if immediately followed by "was".

If you click on thetitle of aresult, you will be brought to the corresponding Wikipedia page, asthe factory
embodied in the W ki pedi aDocunent Col | ect i on sets the document URI to the Wikipedia page.
If you want amore technical view of what's happening, you can usethe Gener i cl t emclass, which will
display in avery simple manner the content of all fields.

Another interesting property of the Wikipedia examples is the end-of-sentence markers (1) are indexed.
Y ou can use another fairly exotic operator, Brouwerian difference, to restrict your resultsto queriesthat are
true inside a sentence. The semantics of query in MG4Jis a set of minimal intervals that represent region
of text that satisfy the query. For instance, for the query was Ki | | ed theintervals describe the smallest
regions of text inwhichwas and ki | | ed do appear. But the difference operator (aminus) will eliminate
the intervals generated by the left query that contain one or more interval from the right query. Thus,

was killed - ¢

will perform the same search, but we will see only those results for which there are regions of text not
containing 1. In other words, results will be restricted to be within a sentence, as matches (i.e., again,
regions of text) that cross sentence borders will be killed by the difference operator.

Finally, the index remapping operator comes handy in two situations: display the results of afield using
another, paralld field, or applying positional operators to results from different fields. If you search for
WSJ: (B\ - E\: PERSON | B\-1\: PERSON), the resulting snippets will be rather ugly:

Docurent #205 [2.000000] Protected_areas_of_Tasmani a
WSJ: ...0 O O B-N: CARDI NAL |- N: CARDI NAL |- N: CARDI NAL |- N: CARDI NAL
O B-E: PERSON | -E: PERSON 0 0 0 O O B-N: CARDINAL O ...

A Quick Tour of MG4J

Docurent #258 [1.999152] List_of _peopl e_by name: Kea- Kel
W5): ? 0 0 B-EPERDESC 0 O O BBEEPERSON? 0 0 0 00?0 ...

Thisiscorrect, asMGAJisdisplaying results from the W S field. It is however easy to remap those results
to another index: if wetry (W5J: (B\ - E\: PERSON | B\-1\: PERSON)){{W5J- >t oken}}, the
result will belike

Docurent #205 [2.000000] Protected _areas_of Tasnani a
token: ...but it contains no fewer than 495 separate Protected Areas
with a total area of 22 ,

Docunent #258 [1.999152] List_of _peopl e_by_name: _Kea- Kel
token: ? List of people by nane : Kea-Kel ? Access to rest of list ? Access ...

Snippets are now represented using the parallel content of thet oken field.

Assume now that we want to find aperson’'s name immediately followed by theterm "was'. A direct attemp
would betrying the query " WSJ: (B\ - E\ : PERSON | B\-1\: PERSON) was": theresult would be
an error message (" The phrase operator requires subqueries on the same index"). Thisis correct, because
intervals returned by the two subqueries of the phrasal operators are on different indices—mixing them
makes no sense. However, if you're sure that you are handling indices on paralléel texts, theidea does make
sense, and we can convince MG4J about this as follows:

{token, WBJ}>"(WBJ: (B\-E\:PERSON | B\-1\:PERSON){{WsJ- >t oken}}) (token:was)"

Docurent #225 [1.996363] Days_of our_Lives
token: ...famly tree by way of SORAS . ? Abby was rapidly aged to a teenager . ?

Docurent #467 [1.995153] Airey_Neave
token: ...in Northern Ireland . ? In 1975 , Neave was the canpai gn manager for Mar

Inthisexample, wequalified also "was" with anindex selector to avoid problemsin case multiplexingison.

A TREC index

In this section we discuss thoroughly the construction of an index based on the TREC GOV 2 collection
(Text REtrieval Conferences are series of events organized by the National Ingtitute of Standards
and Technology to evaluate scientifically and reproducibly systems for information retrieval). TREC
collections must be bought to be used, but they are very commonly used for scientific work. In this
example we use a TRECDocunent Col | ect i on to index GOV2 (25 million web pages). Be warned
that different collections have dightly different formats, and TRECDocunent Col | ect i on might need
some tweaking to work with them (we are making it more and more flexible on a per-request basis).

GOV2 data comes as alist of filesin directories named GX000, GX001, and so on. The file themselves
are zipped (you can create the collection with unzipped files, however, if you want faster access).

find GX??? -inanme *.gz | \
java it.unim.di.big.ng4j.docunment. TRECDocunent Col | ection \
-f Htm Docurment Factory -p encodi ng=I SO-8859-1 -z trec.collection

After some grinding, you'll get the collection. Note that this process is mainly useful for accessing later
the collection in arandom fashion—for instance, to generate snippets.

Since we want to index anchor text, we must now generate URIs that will represent each document.

A Quick Tour of MG4J

java it.unim.di.big.ng4j.tool.ScanMetadata -S trec.collection -u trec.uris

Note the - U option. GOV2 contains many duplicate (and even triplicate) URLS, modulo trivial
normalizations such as adding a bar after the host name. The - U option is a very crude way of making
them unique. (A more principled mechanism would involve merging all documents with identical URLS,
but that should have been addressed when GOV 2 was built.)

We are now ready to build our index:

java it.unim.di.big.nmg4j.tool.IndexBuilder -S trec.collection\
-t snowbal | . PorterStenmer -a -v anchor:trec.vdr trec

We set arather large batch size, assuming that alot of memory is available. Aswe said, Scan will try to
detect low-memory conditions and dump batches automatically, but you can lower the batch size, in case
you run into out-of-memory errors. We also require a downcasing Porter stemmer (all Snowball [http://
snowball .tartarus.org/]-based stemmers downcase terms). Beware again: you will be generating hundreds
of batches, so you must be able to open afew thousand files in the combination phase. When the indexing
process is completed, you can query the index as usual.

http://snowball.tartarus.org/
http://snowball.tartarus.org/
http://snowball.tartarus.org/

Chapter 2. Behind the scenes: The
Indexing process

Introduction

The main point of MG4J is the construction of inverted indices: an inverted index isjust like the index
you can find at the end of abook isalist of the occurrencesin the text of every term. Building an inverted
index is a complex process that MG4J perform essentially in two phases. Furthermore, there is another
step that is called term map construction that is optional, depending on the kind of functionalities you
require of your index.

Besides traditional indices, MGA4J provides payload-based indices, which are used to store metadata
associated to documents such as dates, integers, and so on.

In this chapter we will try to dissect the whole process to give you an idea of what happens when you
runthel ndex class.

Preamble: terms, dictionaries and term-related
maps

Before starting our description of the indexing process, a brief introduction is necessary to present some
basic concepts. MG4J has to do with documents (e.g., HTML files, mail messages etc.), and every
document is composed by fields (e.g., the fields of a mail message will probably be its subject, sender,
recipient, body etc.). Although, as we shall see, MG4J will provides support for non-textual fields, its
"bread and butter" is with textual fields, and for the time being we shall assume that we are dealing with
documents composed of just one textual field.

A textual field (in our smplified view: a document) is a sequence of words: it is up to the factory
producing the document to decide how to choose words (e.g., one may want to discard digits or not),
and how to segment the document. For instance, the typical letter-to-nonletter transition used to split
Western languages does not work very well with, say, Chinese. However, once segmentation has produced
suitable words, they must be turned into indexable terms: for instance, you may want to downcase your
words, but at the same time you may want to keep "ph" (as in "this soap's ph") separated from "Ph" (as
in "Ph.D. degree"). You may also want to make more dramatic transformations, such as stemming,
or avoid indexing a term altogether. All these operation are performed by a term processor, which
can be specified on the command line. The option - - downcase, for instance, selects for you the
classit.unim.di.big.ng4j.index. DowncaseTer nProcessor. The chosen processor is
recorded into the index structure: thisis essential for interpreting queries correctly.

Note that in the design of other search engines segmentation and processing are somehow mixed into a
generic tokenisation phase. We prefer to split clearly between linguistic and algorithmic term processing.
Linguistic processing depends only on the writing customs of alanguage, whereas a gorithmic processing
might be language neutral (we do not exclude, however, that it might be language dependent, too).

If you scan the whole document collection, you can collect all terms that appear in it; the set of all such
terms s called the term dictionary. Note that every term in the dictionary appears in some (at least one)
document, and probably it will appear in many documents, possibly even many times in some documents.
(By the way: terms that appear in just one document are called hapax legomena, and they are far more
frequent than one might expect in many collections, especially due to typos).

Behind the scenes:
The indexing process

MGA4J, like any other indexing tool, does not treat internally terms as character sequences, but it uses
numbers. This means that terms in the dictionary are assigned an index (a number between 0 and the
dictionary size minus 1), and that this index is used whenever the application needs to refer to a term.
Usually, indices are assigned in lexicographical order: this meansthat index O is assigned to thefirst term
in lexicographic order, index 1 to the next one and so on). The assignment between terms and indices is
stored in a suitable data structure, that compactly represents both the dictionary and the map.

There are many possible different representations of this assignment, each with certain memory
requirements and each allowing different kind of access to the data.

e The simplest kind of representation of a dictionary is the term list: a text file containing the whole
dictionary, one term per line, in index order (the first line contains term with index 0, the second
line contains term with index 1 etc.). This representation is not especialy efficient, and access-timeis
prohibitive for most applications. Usually, afile containing the term list is stemmed with . t er ns; if
the terms are not sorted lexicographically, the fileis stemmed with . t er ns. unsort ed.

* A much more efficient representation is by means of a monotone minimal perfect hash function: itisa
very compact data structure that is able to answer correctly to the question “What is the index of this
term?’ (more presicely, "What isthe lexicographical rank of thisterm inthetermlist?"). Y ou can build
such afunction from a sorted term list using the (main method of) implementations available in Sux4J
[http://sux4j.di.unimi.it/].

» Monaotone minimal perfect functionsarevery efficient and compact, but they have aseriouslimit. Aswe
said before, they can answer correctly to the question “What isthe index thisterm?’, but only for terms
that appear in the dictionary. In other words, if the above question is posed for a term that does not
appear anywhere, the answer you get is completely useless. Thisis not going to cause any harm, if you
are sure that you will never try to access the function with aterm that does not belong to the dictionary,
but it will become a nuisance in all other cases. To solve this problem, you can sign the function. A
signed function will answer with a special value (-1) that means “the word is not in the dictionary”.
You can sign any function using the signing classes in dsi ut i | s [http:/dsiutils.di.unimi.it/] (e.g.,
Shi f t AddXor Si gnedFuncti on).

* Signed and unsigned monotoneminimal perfect hash functionsare ok, aslong asyou don't need to access
the index with wildcards. Wildcard searches require the use of a prefix map. A prefix map is able to
anwer correctly to questionslike “What are the indices of terms starting with these characters?’. Thisis
meaningful only if thetermsarelexicographically sorted: in this case, theindices of termsstartingwith a
given prefix are consecutive, so the above question can be answered by giving just two integers (thefirst
and thelast index of terms satisfying the property). Y ou can build aprefix map by using the main method
of one of theimplementation of the Pr ef i xMap interface, e.g., | nmut abl eExt er nal Pr ef i xMap
from dsi ut i | s—actualy, thisis exactly what happens when you use | ndexBui | der , abeit you
can specify adifferent class for the term map using an option.

Scan: Building batches

In this step, MG4J scans the whole document collection producing the so-called batches. Batches are
subindices limited to a subset of documents, and they are created each time the number of indexed
documents reaches a user-provided threshold, or when the available memory istoo little.

An occurrence is a group of three numbers, say (t ,d,p), meaning that term with index t appears in
document d at position p. Here, both the term and document are represented by along integer, called, in
the second case, the document pointer, whichisin most cases the position of the document in the document
collection (O for the first document, 1 for the second document and so on). Position is an integer that
represents where the term occurs in the document.

To understand what the scanning phase really does, suppose you have three documents:;

10

http://sux4j.di.unimi.it/
http://sux4j.di.unimi.it/
http://dsiutils.di.unimi.it/
http://dsiutils.di.unimi.it/

Behind the scenes:
The indexing process

Document pointer Document

0 | loveyou

1 Godislove
2 Loveisblind
3 Blind justice

Hereisthe dictionary produced initially by the scanning phase:

Term index

Term

blind

god

is

justice

love

OO~ WIN| PP, O

you

Now, at least conceptually, thisisthelist of occurrences:

Occurrences (in the same order asthey arefound when scanning the documents)

(2,0,0) (50,1) (6,0,2) (1,1,0) (3,1,) (5,1,2) (5,2,0) (3:2,1) (0,2,2) (0,3,0) (4,3,1)

This simply means that:

» term 2 (1) appears in document O at position O;

» term 5 (1 ove) appearsin document O at position 1;

e term 6 (you) appearsin document O at position 2;

and so on. Inverted lists can now be obtained by re-sorting the occurrences in increasing term order, so

that occurrences relative to the same term appear consecutively:

Term Occurrences

0 (blind) (0,22) (03,0)

1 (god) (11,0

2(i) (20,0)

3(is) (311) (3271

4 (justice) (431)

5 (love) (501) (51.2) (52,0
6 (you) (6,0,2)

Now, the indexer must:

11

Behind the scenes:
The indexing process

» scan all documents and extract occurrences;

« if thelist of terms have not yet been obtained, gather new terms as they are found;

* sort the termsin alphabetical order, renumbering al occurrences correspondingly;

* (if required) renumber the documents and sort them in increasing order,

* sort, at least partially, the occurrences found in increasing term order;

» when the number of accumulated documents reaches a given threshold, create a subindex containing

the current batch of occurrences.

Thelast point needs further explanation. Since occurrences are a lot it is not reasonabl e to think that they
can be all kept in memory. What the indexing pass does is keeping an internal batch where occurrences
are stored as they are found; when the batch is full, it is ordered by term, and flushed out on disk under
the form of a subindex. Every batch will be in term order, but different batches may (and usualy, will)
contain occurrences of the same termG.

Getting back

STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna
STWr--f-- 1 vigna

to the example given

Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha

in Chapter 1, where we
j avadoc. col | ecti on, the basename of the resulting index is going to be j avadoc (as usua,
completed with the field name). After running | ndexBui | der , we get the following files:

430
144
20k
29k
1.1M
52k
5. 8M
54k
387
9. 4k
1.2k
175k
412k
14k
19k
3. 8M
40k
37k
342
4.7k
264k
11k
15k
2.7M
31k
29k
342
4. 5k
213k
3. 1k
4. 2k
234k

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

02
02
02
02
02
02
02
02
02
02
02
02
02
01
01
01
01
01
01
01
01
02
02
02
02
02
02
02
02
02
02
02

j avadoc-t ext.
j avadoc-t ext.
j avadoc-t ext.
j avadoc-t ext.
j avadoc-t ext.
j avadoc-t ext.
j avadoc-text.
j avadoc-text.
j avadoc-text.
j avadoc-text.
j avadoc-text.

j avadoc-t ext

indexed the collection

cl uster. prope
cluster.strat
frequenci es
gl obcount s

i ndex

of f sets

posi tions
posnunbits
properties

si zes

stats

. ter mmap

javadoc-text.terns

j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.

12

frequenci es
gl obcount s
i ndex

of f sets
posnunbits
properties
si zes

terns
frequenci es
gl obcount s
i ndex

of f sets
posnunbits
properties
si zes

terns
frequenci es
gl obcount s
i ndex

Behind the scenes:
The indexing process

STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--
STWr--T--

PR RPRRPRPRPRRPRRPRPRPRPRPRPRPRRPRPRRPRPRPRPRRRPRPRPRPRPRPRPREPREPREPRPRPRRPRRPRRPRRPRRERRERRRR

Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha
Vi gha

Vi gha 10k
Vi gha 9. 3k
Vi gha 336
Vi gha 221
Vi gha 80k
Vi gha 429
Vi gha 144
Vi gha 1.5k
Vi gha 1.5k
Vi gha 25k
Vi gha 5. 2k
Vi gha 9. 9k
Vi gha 1. 6k
Vi gha 376
Vi gha 2.5k
Vi gha 1.1k
Vi gha 31k
Vi gha 61k
Vi gha 752
Vi gha 752
Vi gha 11k
Vi gha 2.1k
Vi gha 791
Vi gha 329
Vi gha 1.2k
Vi gha 32k
Vi gha 761
Vi gha 761
Vi gha 11k
Vi gha 2.1k
Vi gha 883
Vi gha 330
Vi gha 1.2k
Vi gha 29k
Vi gha 41
Vi gha 41
Vi gha 400
Vi gha 91
Vi gha 44
Vi gha 320
Vi gha 57
Vi gha 1.2k

13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13

12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:
12:

02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
01
01
01
01
01
01
01
01
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02
02

j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
j avadoc-t ext @.
javadoc-title.c
javadoc-title.c
javadoc-title.f
javadoc-title.g
javadoc-title.

javadoc-title.o
javadoc-title.p
javadoc-title.p
javadoc-title.p
javadoc-title.s
javadoc-title.s
javadoc-title.t
javadoc-title.t
javadoc-titl e@

javadoc-titl e@.
javadoc-titl e@.
javadoc-titl e@.
javadoc-titl e@.
javadoc-titl e@.
javadoc-titl e@.
javadoc-titl e@.
javadoc-title@.
javadoc-title@.
javadoc-title@.
javadoc-title@.
javadoc-title@.
javadoc-title@.
javadoc-title@.
javadoc-title@.
javadoc-titl e@.
javadoc-titl e@.
javadoc-titl e@.
javadoc-titl e@.
javadoc-titl e@.
javadoc-titl e@.
javadoc-titl e@.

javadoc-title@

As you can see, there are severa new files (they could be more or less, depending on the number of
documents stored on your system): each file whose names starts with j avadoc-t ext @belongs to a
certain subindex, that was generated using a batch of occurrences. Thej avadoc-t ext . properti es
file contains global information pertaining all subindices. Other files, such asthe . si zes files, contain
the list of the document sizes (the number of words contained in each document). The latter is useful for
statistical purposes, but it might also be used by the indices, to establish better compression methods for
the inverted lists. The . t er s files, instead, contains the terms indexed in each batch. Note that each
subindex can be queried separately, abeit you will need to generate manually a term map if you want to
write query by term and not by term number (I ndexBui | der creates such a map just for the whole
index). Theclassi t.uni m .dsi.util.|mmutabl eExternal PrefixMap, for instance, can be

used to this purpose.

13

of fsets
posnunbits
properties
si zes

terns

| uster. prop
luster.stra
requenci es
| obcount s
ndex

ffsets
ositions
osnunbits
roperties

i zes

tats

er mrap

erns
.frequenci e
gl obcount s
i ndex

of f sets
posnunbits
properties
si zes
terns
frequenci e
gl obcount s
i ndex

of f sets
posnunbits
properties
si zes
terns
frequenci e
gl obcount s
i ndex

of f sets
posnunbits
properties
si zes
.terms

Behind the scenes:
The indexing process

Now, if you look intothej avadoc-t ext . properti es file you will find some information:

documents = 4090

terns = 32634

postings = 976736

maxcount = 3425

i ndexclass = it.unim.di.big.ng4j.index.FileHPlndex
ski pquantum = 0

ski pheight = 8

codi ng = FREQUENCI ES: GAMVA

codi ng = PO NTERS: DELTA

codi ng = COUNTS: GAMVA

codi ng = PQSI TI ONS: DELTA

ternprocessor = it.uninm.di.big.ng4j.index. DowncaseTer nProcessor
bat ches = 3

field = text

size = 57884884
maxdocsi ze = 53057
occurrences = 4599358

You can see some the overall number of occurrences (4599358), the number of batches (3) and the
maximum size (number of words) of a document (53057). Similar information is available on a per-batch
basislooking at theremaining . pr operti es files.

Thefilesstartingwithj avadoc-t ext . cl ust er present acluster view of the set of batches just built.
Essentially, they provide dynamic access to the entire set of batches as a single index. More information
can be found in the documentation of the packagei t . uni nmi . di . bi g. mg4j . i ndex. cl uster.

Time/space requirements

The scanning phase is, by far, the most time/space consuming. MG4J will work with little memory, but
more memory will make it possible to build larger batches, which can then be merged more quickly and
without opening too many files. Y ou shoiuld set the VM memory as high as you can go, and a number
of documens per batch that does not cause too many compactions (or most of the time will be spent in
the garbage collector), aways keeping in mind that larger batches are better. If you experience out-of-
memory errors (but it shouldn't happen!), just lower the number of documents per batch. Note that the
memory compaction performed by M G4J seemsto makethe VM erroneously think that thereistoo much
garbage collection, sometimes resulting in an Qut OF Menor yEr r or due to excessive garbage-collector
overhead. Please use the option - XX: - UseGCOver headLi mi t to overcome the problem.

Thekind of document sequence is going to influence heavily theindexing time. The best way of providing
data to MGA4J is to stream documents to the standard input, separating them with a character (usually,
newline or NUL). This is the default choice if you do not specify explicitly a collection. Other kind of
collections (e.g., database-based collections) might be reasonably efficient, but, for instance, do not expect
great results from document segquences retreving documents directly from the file system one at atime.

Remember that the indexer will produce a number of subindices, and this number will depend on the
overall number of occurrences (which is, essentially, proportional to the total document size). Combining
these subindices (or accessing them using an on-the-fly index combiner) has a cost in time that increases
logarithmically with the number of subindices. Moreover, for each subindex an on-the-fly combiner needs
to allocate buffers, so the memory cost for batch or on-the-fly combination increases linearly with the
number of subindices. The rule of thumb is that you should try to make batches as large as possible, but
you should also check thelogs because working with an almost full heap can slow down Javasignificantly,
and exaggeratly large batches can cause slowdown because of the large number of cache misses.

14

Behind the scenes:
The indexing process

Combining batches

Once you have the batches, you must combine them in asingle index (inthe | ndexBui | der example,
combination has been handled for you). Note that MG4J allows you to combine any set of indices, which
means, for instance, that if your collection is split in several piece you can index the pieces separately and
combine them later. MG4J distinguish three type of index combination:

1. Concatenationtakesalist of indicesand buildsanew index asfollows: thefirst document of the second
index is renumbered to the number of documents of the first index, and the others follow; the first
document of the third index is renumbered to the sum of number of documents of the first and second
index, and so on. The resulting index is identical to the index that would be produced by indexing the
concatenation of document sequences producing each index. This is the kind of combination that is
applied to batches, unless documents were renumbered.

2. Merging assumes that each index contains a separate subset of documents, with non-overlapping
number, and merges the lists accordingly. In case a document appears in two indices, the merge
operation is stopped. Note that no renumbering is performed. This is the kind of combination that is
applied to batches when documents have been renumbered, and each batch contains potentially non-
consecutive document numbers.

3. Pasting relaxes further the assumptions of merging: each index is assumed to index a (possibly empty)
part of adocument. For each term and document, the positions of theterm in the document are gathered
(and possibly suitably renumbered). If the inputs that have been indexed are text files with newline
as separator, the resulting index is identical to the one that would be obtained by applying the UN*X
command paste to the text files. This is the kind of combination that is applied to virtual documents,
described in the next section.

Please consult the Javadoc of the packagei t. uni mi . di . bi g. ng4j . docunent and of the above
classes for more information.

Virtual fields in MG4J

As we explained, documents usualy originate from some stream in the form of byte
seguences; every such sequence representing a document is then interpeted by some document
factory that actually maps the byte sequence into a set of fields. For example, the
it.unim.di.big.nmg4j.docunent. Ht m Docunent Fact ory transates a sequence of bytes
into a set of fields, such as the title of the HTML document and its body. The factory deals with all
the problems of trandating bytes into characters, of establishing which parts of the document should be
retained (e.g., in the case of HTML, discarding tags), of determining word borders etc.

There are cases, though, when the content of a document actually refers to another document in the
collection: for example, it iswell known that aHTML document may contain anchors, that are pieces of
text that link to (and, at least conceptually, refer to) another document, specified viaa URI.

As an example, consider the following document, with URI ht t p: / / f 0o. bar/ one. ht m :

<! DCCTYPE htm PUBLIC "-//WBC//DID XHTM. 1.0 Strict//EN
"http://ww. w3. org/ TR xhtml 1/ DTDY xht m 1-strict.dtd">
<htm >
<title>This is docunent one</title>
<body>
<p>Here you can find a docunent \
containing a lot of information about Mngolia.

15

Behind the scenes:
The indexing process

</ body>
</htnl >

The piece of text that reads:
docunment containing a |lot of information about Mngolia

is actually an anchor that refers to another document (with URI htt p: //f oo. bar/two. htnl) and
this fact should somehow be made explicit when indexing the collection. For example, in some sense, the
word Mongol i ashould be taken as appearing in the document ht t p: / / f 0o. bar/two. ht m , even
if it may not even be mentioned in the text at that page.

This situation is dealt with by MG4J with the specia notion of virtual field. Understanding how virtual
fields actually work requires some patience, and some knowledge of theinternal organization of document
collections and factories; the reader may want to skip this section, reserving it for later.

Virtual fields and virtual fragments

Aswe briefly said, every document factory is responsible for turning raw byte sequencesinto documents.
In particular, every factory transforms a sequence of bytesinto a number of fields. Every field has aname
and atype: for example, a document factory for mail documents might contain fields such as subj ect ,
fromto, body, dat e etc. The type of afield determines which values the field might contain. The
two most important types of fields (and currently the only ones that MG4J is able to index) are textual
fields and virtual fields.

A textua field, as the reader may guess, isjust a piece of text, that is recognized as composed by words:
words of atextua fields are the atoms of MGA4J indexing system for textual fields. How words are really
singled out from the stream of charactersis a subtle problem that is dealt with by something that is called
aword reader in the MG4J jargon, but we reserve a more comprehensive explanation of how this actually
worksfor later.

Let us consider, instead, virtual fields. To make our explanations more concrete, let us consider the
HTMLDocunent Fact or y: as we said above, this factory produces fields out of a HTML document.
Actualy, the factory has three fields: two of them (t ext andti t| e) are textual, and one (anchor)
isvirtual.

A virtual field produces pieces of text that are to be referred to other documents, possibly belonging to the
collection. To establish a precise terminology, let us call referrer the document that we are considering,
and referee the document to which a certain piece of referrer is referring to. Now, the referrer produces
in avirtual field a number of fragments of text, each referring to a certain referee. Hence, the content
of avirtual field is conceptually alist of pairs made by a piece of text (called virtual fragment) and by
some string that isaimed at representing the referee (called the document spec because it should somehow
specify which document we are referring to).

In the case of the HTMLDocunent Fact or y, theanchor fieldisthelist of al anchors contained in the
document; the document spec is a URL (as specified in the href attribute) whereas the virtual fragment is
the content of the anchor element. To be more precise, the actual implementation of the factory in MG4J
considers not only the content of the anchor, but also some surrounding text, calle the anchor context.
Thisis only incidental, though: the important point is that a certain piece of text is associated with the
document spec.

Note that as far as document factories are concerned, there is no fixed way to map document spec into
actual references to documents in the collection. This is resolved, in MG4J, by the notion of document
resolver.

16

Behind the scenes:
The indexing process

Document resolvers

A document resolver is an object that is able to map the document spec produced by some document
factory into actual references to documentsin the collection: more precisely, given a document spec, the
resolver will decide whether the spec really refers to a document in the collection or not, and in the first
case it will find out to which document the spec refers to.

Y ou don't need to deal with document resolvers until you try to index virtual fields. Thisis something that
actually MG4J does only on demand: this is why in the example of the previous section we ignored the
problem. Indeed, when we issued the command:

java - Xnmx256M it.unim.di.big.nmg4j.tool .| ndexBuilder \
--downcase -S javadoc. col | ection javadoc

we asked MG4Jto index only thetextual fields of the collection (whose documents were, asyou remember,
HTML documents). This means that only titles and texts were indexed, but no anchors (some of you may
have noticed that MG4J emitted a brief warning about thisfact, loggingthat Vi rt ual fi el d anchor
is not being indexed; use -a or explicitly add field anmong the indexed
ones).

Now, if you want to index also anchors you might explicitly ask for it, or you may use the - a option:

java - Xnmx256M it.unim.di.big.nmg4j.tool.|ndexBuilder \
-a --downcase -S javadoc. col | ection javadoc

If you try to do so, you will get an exception, saying that No resol ver was associ ated
with virtual field anchor: to understand the meaning of this exception we need to build
a document resolver that is able to translate the document spec produced for the field anchor by the
HTM.Docunent Fact or y intoreferencesto documents of the collection. Notethat every document spec
needs adifferent kind of document resolver, and you need to know which document resolver fitsthe needs
of acertain virtual field.

In the case of anchors, the job is done by the URLMPHVI r t ual Docunent Resol ver class, that turns
URLsinto document pointers (i.e., referencesto documents). To build aURL document resolver, you first
need to find the URLSs of the document within your collection; you can list them as follows

java - Xnmx256M it.uni m.di.big.ng4j.tool.ScanMetadata \
-S javadoc. col l ection -u javadoc.urls

This command scans the whole collection and produces a (text) filecalledj avadoc. ur | s that contains
the URL s of the collection in their order (of course, the collection URIsmust actually be URLS). Note that
in the case of our collections, URLs will actually bejust file names.

By the way, you can use ScanMet adat a also to extract other information (e.g., the document titles)
from your collection.

Now that you have alist or URLS, one per document, you can build the document resolver you need by
caling:

java - Xnx256M it . unim . di.big.nmg4j.tool.URLMPHVI rtual Docunment Resol ver \
-0 javadoc.urls javadoc-anchor.resol ver

This command produces the resolver you need to index your anchor fields. Now, you can try again to
index the whole collection, running:

java - Xnx512Mit.uni m .di.big. nmg4j.tool .| ndexBuil der \

17

Behind the scenes:
The indexing process

-a -v anchor:javadoc-anchor.resol ver --downcase \
-S javadoc. col |l ecti on javadoc

What is a document resolver actually doing: virtual texts
and gaps

To understand what wejust did, it isuseful to think that conceptually all the virtual fragmentsthat refer toa
given document of the coll ection should be thought of as producing asingletext, called thevirtual text. So,
for example, all thetext of anchorsreferringtofi | e: / usr/ shar e/ j avadoc/j aval/j aval/l ang/

String. ht M should be concatenated and thought of a single virtual text that will be indexed as a part
offile:/usr/share/javadoc/javal/javal/lang/ String.htm .

Indeed, if you start the query engine again

java it.unim.di.big.nmy4j.query. Qery -h -i FileSystemtem\
-c javadoc. coll ection javadoc-text \
javadoc-title javadoc-anchor

you will be able to input queries such ast ext : i npl enent ati on AND anchor : buf f er that are
matched by all documents that contain theword i npl ement at i on intheir text and the word buf f er
in (some of their) anchor(s).

Some caution should be exercised here. When indexing, the virtual text is actually (somehow) built
by concatenating the anchor text. This means that virtual fragments coming from different anchors are
actually concatenated. Thisfact might produce false positive results. For example, querieslikeanchor :
(buffer AND | ong) are matched by documents that contain both the word buf f er and the word
| ong in their anchors, but not necessarily in the same anchor.

To avoid such kinds of false positives, you can play with virtual gaps: the virtual gap is a positive integer,
and it isthevirtual space |eft between different virtual fragments. For example, if the virtual gap is 64 (the
default), anchors are concatenated by leaving 64 "empty words" between subsequent fragments.

Hence, for example, if you input a query like anchor : (buf fer AND | ong) ~64 you will be sure
that only documents that contain both words in the same anchor will be found. Of course, this time you
might have false negatives, if some anchor is longer than 64 words. If you want, while indexing you can
specify adifferent virtual gap; for example:

java - Xnk512Mit.unim.di.big.ng4j.tool.IlndexBuil der \
-a -g anchor: 100 -v anchor:javadoc-anchor.resol ver \
--downcase -S javadoc. col |l ection javadoc

runs exactly as before, but leaving a virtual gap of 100 words between successive fragments.

Payload-based indices

MGA4J provides a specia kind of index, caled payload-based index, that is used to store not text but
rather metadata (dates, integers, etc.) related to a document. It is the default way of storing non-textual
fields. Essentially, a payload-based index leverages the structure of atext-based index: it has no counts or
positions, but each posting has a payload—a piece of datarelated to the document referred by the posting.
Inthisway, by creating an index with asingle posting list (related to theterm #) we are effectively storing
metadata rel ated to each document. The main advantage of this approach isthat we get almost for free the
sophisticated skipping structure of MG4J's indices, and support for splitting, combination, and so on.

18

Behind the scenes:
The indexing process

From the user viewpoint there is no particular difference between standard and payload-based indices,
except that the latter do not provide some files that would be nonsensical, such as the file of sizes or the
global occurrence count, and that searching a payload-based index is rather different form searching an
index (instead of term-based operators and Boolean combinators you just get range queries).

19

Chapter 3. Performance

Indexing Time

MGA4J provides a great flexibility in index construction. For instance, you can choose several different
codes for the components of theindex, and moreover you can decide to drop parts you are not going to use
(e.g., positions). All these choices have asignificant impact on performance. Building a collection during
the indexing phase will of course slow down the whole process.

In general building large batches is a good ideaif you have alot memory; you can set the tentative batch
size using the - s option. However, if your collection contains alarge number of terms (e.g., if it contains
many hapax legomena—termsthat occur just oncein the collection) avery large number of objectswill be
generated. This can cause amassive amount of garbage collection if you're relatively tight on memory. For
thisreason, thereisalimit on the number of termsindexed at once (seethe - Moption of | ndexBui | der
and Scan).

Setting up the index structure

In MGA4J, you can choose the codes used for compression. As a general rule, nonparametric codes are
quicker than parametric codes. Thus, Golomb codes for document pointers have an excellent compression
rate, but 5 codes have very good compression, too, and can be decoded more quickly. The point hereisthat
for unary, Y, shifted ,, and & codes M G4J uses precomputed decoding tables that speed up decompression
by an order of magnitude. The default choice (,, for frequencies, & for pointers, ,, for counts, and g for
positions) is very reasonable. For maximum speed you could even try to usey everywhere (asit is quicker
to decode if the precomputed decoding tables fail).

Another important trick is that of discarding what you don't need. The default MG4J index type is
called high-performance: it contains al information (pointers, counts, positions) but it is only partially
interleaved#positions are kept in a separate file. This satisfies most needs, but If you are just using BM25
or TF/IDF scoring, there is no need to store positions in your index: you can force a standard, interleaved
index, and storejust what you need (e.g., - cPOSI TI ONS: NONE will eliminate positions from the index).

By default, indices contain a skipping structure that makes skipping index entries faster. Skipping
structures introduce a slight overhead when scanning sequentially alist (so you should disable them using
the- - no- ski ps optionif you don't need them), but in general they make query processing significantly
faster. Skipping structure are based on two parameters. the quantum g and the height h. The quantum
dictates how often the skipping structure should index positions in the inverted list. The height dictates
how far the skipping structure is able to jump in one shot (an index is able to skip in one shot as far as
q2h). However, as h grows the memory required to build the skip structures grow exponentially: the rule
of thumb is setting h as large as possible without incurring in out-of-memory errors.

Sizing the quantum is a more complex issue, as it depends on the structure of the inverted list. Dense
inverted lists require smaller quanta. Since version 3.0, MG4J makes it possible to just specify the
percentage of the index size occupied by the skipping structure, and let some machinery compute the
correct quantum. Y ou can also specify a quantum explicitly, but it will be the same for al lists, which is
usually not agood thing.

Setup Time

Once the index has been created, there are many ways in which you can improve query resolution time.
First of all, an index can be read from disk, memory-mapped, or directly loaded into main memory. These

20

Performance

three solutions work with increasing speed and increased main memory usage. The default is to read an
index fromdisk, but you can add suitable optionsto theindex URI (e.g., mapped=1 ori nnenor y=1#see
the | ndex. Uri Keys documentation) to force your preferences. Analogously, offsets are necessary
to locate, inside the index file, the posting list of a certain term. By default they are read from disk
using a Sem Ext ernal O f set Li st, but you can load them in memory if you prefer so. If you
load sizes (e.g., because you want to run a scorer that needs them) there is a suitable URI option (e.g.,
succi nct si zes=1) that will load sizes in a highly compact format. Thisis particularly useful when
pasting large indices.

To get more options, you can partition your index. Once you have acluster formed by several sub-indices,
you can decide which sub-indices go to memory, which will be mapped, and so on.

An important source of delay in loading the index is the expansion of the dump file of an
| mrut abl eExt er nal Pref i xMap, which is the default term map generated by | ndexBui | der .
The dump file must be copied from the serialized representation to a temporary directory, and for large
collections the process can be very slow. The solution is either to use a different term map (e.g., some
kind of signed hash—see the minimal perfect hash classes of Sux4J[http://sux4j.di.unimi.it/]) to generate
(either programmatically or using the main method of | nrmut abl eExt er nal Pr ef i xMap) anon-self-
contained, synchronized instance of | mrut abl eExt er nal Pr ef i xMap and saveit using the standard
suffix for term maps. Such an instance is based on a separate dump file that must be attached to the
deserialized instance before usage (see the documentation for details). You can attach the dump stream
by invoking

((I'mrut abl eExt er nal Prefi xMap)i ndex. termvap). set DunpStrean(fil enane);

with the appropriate argument.

Query Time

Once you are convinced that your setup is reasonable you should generate a wired
Bi t St r eam ndexReader /Bi t St r eanHPI ndexReader . Thelatter are the generic classes used by
MG4J to read an index: thus, they incorporates al the logic required to handle literally hundreds of types
of indices. However, you can use the Ruby script genbi t st r eanT eader s. r b provided with MG4J
to generate additional instances that are wired to a specific index type. When loading an index, MG4J
will fetch dynamically (by reflection) the wired class and will log (at | NFOlevel) that it isusing awired
class instead of the generic class. (The standard MG4J distribution contains wired classes for the default
index-construction options.)

The Ruby script above prints a list of commands involving a C compiler (by default, gcc).
Actualy, the commands use the C preprocessor to filter a driver file contained in the source tree
(Bi t St rean] HP] | ndexReader . c). Executing the output of the Ruby script will generateall possible
wired classes (hundreds), but you can also select manually the classes you prefer to generate.

The ssimplest way to understand the wiring process is having a look at the output of the Ruby script:
essentially, defining the symbol GENERI C you obtain the generic driver. Otherwise, you can define
symbols SKI PS and PAYLQOADS if you want these features, and then you must specify assertions with
name f r equenci es, poi nters, counts, and posi ti ons that either select a code or disable a
feature (asin Conbi ne'scommand line options). The symbol CLASSNAME definesthe wired class name,
and must be generated following the algorithm contained in the Ruby script, or MG4Jwill mistakenly load
wired classes that are not adapt for your index.

21

http://sux4j.di.unimi.it/
http://sux4j.di.unimi.it/

Chapter 4. Clusters & Partitioning

Documental vs. Lexical

MG4J provides a completely generic way of combining indices into clusters. This feature can be used,
for instance, to support incremental indexing, but it goes way beyond that. An index is just a composite
in the design-pattern sense, and can be built by combining different indices. For instance, you can
index separately two sets of documents and then use the two resulting indices as a single index using
a concatenation-based cluster index. Alternatively, you can actually combine the indices, getting a new
index.

More generally, acluster exhibits aset of local indices asasingle global index. Clusters, moreover, can be
documental or lexical. In adocumental cluster, each document of the global index appears exactly oncein
eachlocal index. Inalexical cluster, each term of the global index appears exactly oncein eachlocal index.
These two types of clusters satisfy different needs: documental clusters, for instance, can be used to keep
aset of documentswith high static rank in aseparateindex living on faster storage, whereaslexical cluster
can be used to load in memory the inverted lists of terms that appear more frequently in user queries.

Partitioning vs. Clustering

The opposite of clustering is partitioning. Partitioning an index means dividing its inverted lists using
some criterion, and, not surprisingly, partitioning can be documental or lexical. MGA4J provides tool
that make it possible partitioning using a custom strategy specified by a Java class, so it is very easy
to process indices (even large indices) and partition them in several ways (obvious splitting strategies,
such as uniform strategies, are actually built-in). You should try the Parti t i onDocunent al | y and
PartitionLexi cal |y toolstoget anideaof what can be donem and have alook at the documentation
of thei t.unim .dsi.mdj.cluster package

Of course, the suite of combination tools used to combine batches can be used for the opposite
processttaking the set of local indices making up acluster and turning them into a single combined index,
which will contain the same data of the original cluster, but in adifferent format. Clusters, partitioning and
combining are thus several facets of the same ideatthat is, that an index is actually a composite object.

Creating a Cluster

A cluster is simply defined by a property file having
property i ndexcl ass equal to the suitable cluster class (eg.,
it.unim.di.big.ng4j.index.cluster.Docunental Concat enat edd ust er), a
clustering strategy specified by the property strategy and one | ocalindex
property for each local index (see aso the documentation of

it.unim.di.big.nmg4j.index.cluster.|ndexd uster). You can run | ndexBui | der
withthe- - keep- bat ches optionto have alook at the generated cluster files, which expose the batches
asasingle index.

22

Chapter 5. Accessing MG4J indices
programmatically

Constructing an index and querying it using the Query class is fine, but usually MG4J must be
integrated in some kind of environment. In this chapter we describe how to access programmatically
an index using MG4J. A (small but growing) list of heavily commented examples is available in the
it.unim.di.Dbig.ng4j.exanpl e package.

In general, the first thing you need is to load an index. To do that, you must use the
I ndex. get | nst ance() method, which will arrange for you anumber of things, like finding the right
index class, possibly loading aterm map, and so on. Usually you will have more than an index (e.g., title
and main text).

The second piece of information that is necessary for thefollowing phasesisanindex map—adatastructure
mapping aset of symbolic field names, which will be used to denote thevariousindices, to the actual indices
(e.g., to the actua instances of the | ndex class). There are simple ways to build such maps on the fly
usingfastutil [http://fastutil.di.unim.it/] classes (seethe RunQuery example).
Another important map is the map of term processors, which maps each field name to the respective term
processor. Usually the term processor is the one used to build the index, which can be recovered from the
I ndex instance, but different choices are possible

There are now several waysto access MG4J. Given atextual query, the query is parsed and turned into an
internal composite representation (essentialy, atree). Then, abuilder visitor visits the tree and builds a
corresponding document iterator, which will return the documents that satisfy the query.

At thebasisof the query resolution, index iterators provide resultsfrom theindex (i.e., documentsin which
a term appears, and other information): in other words, they are used as iterators corresponding to the
leaves of the query tree. These can be combined in various ways (conjunction, disunction, etc.) to form
document iterators. Document iterators return documents satisfying the query and, for each document, a
list of minimal intervals representing the regions of text satisfying the query. At that point, scorers are
used to rank the documents returned by the document iterator.

You can handle this chain of events at many different levels. You can, for instance, build
your own document iterators using the various implementations of Docunent|terator.
Or you can create queries (i.e, composite built using the implementations of
it.unim.di.big.nmg4j.query.node. Query), and turn them into document iterators. Y ou can
even start from atextual query, parseit to obtain a composite internal representation, and then go on.

Nonetheless, the simplest way isto use afacade class called Quer yEngi ne that triesto do all the dirty
work for you. A query engine just wants to know which parser you want to use (Si npl ePar ser isthe
default parser provided with MGA4J), which builder visitor you want to use, and which index map. The
builder visitor is avisitor classthat is used to traverse the internal representation of a query and compute
the corresponding document iterator. The default visitor, Docunent | t er at or Bui | der Vi si t or,is
very simple but fitsits purpose. Y ou might want to change it, for instance, to reduce object creation.

A query engine has many tweakabl e parameters, that you can find in the Javadoc documentation. However,
itsmain advantageisthat itsmethod pr ocess() takesatextual query, arange of ranked results, and alist
in which to deposit them, and does everything for you. Y ou can easily get results from MG4Jin thisway.

A different route is that of customizing the Quer ySer vl et classthat MGA4J uses for its HTTP/HTML
display. This might simply involve changing the Vel ocity script that displays the results (and which is set
by a system variable—see the class Ht t pQuer ySer ver) or actually modifying the class code.

23

http://fastutil.di.unimi.it/
http://fastutil.di.unimi.it/

	MG4J (big): The Manual
	Table of Contents
	Chapter 1. A Quick Tour of MG4J
	Building your first index
	Building a compressed collection
	More options
	Querying MG4J
	More sophisticated queries
	A semantic index
	A TREC index

	Chapter 2. Behind the scenes: The indexing process
	Introduction
	Preamble: terms, dictionaries and term-related maps
	Scan: Building batches
	Time/space requirements

	Combining batches
	Virtual fields in MG4J
	Virtual fields and virtual fragments
	Document resolvers
	What is a document resolver actually doing: virtual texts and gaps

	Payload-based indices

	Chapter 3. Performance
	Indexing Time
	Setting up the index structure
	Setup Time
	Query Time

	Chapter 4. Clusters & Partitioning
	Documental vs. Lexical
	Partitioning vs. Clustering
	Creating a Cluster

	Chapter 5. Accessing MG4J indices programmatically

